Algebra Prelim

January 7, 2015

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let V be a vector space over \mathbb{R} of dimension n > 1. Let (e_1, \ldots, e_n) be a basis of V. Consider the linear map $T: V \longrightarrow V$ defined by

$$T(e_i) = e_i + ie_n$$
 for $1 \le i \le n - 1$ and $T(e_n) = 0$.

Let A denote the matrix representation of T in the chosen basis.

- a) Give the matrix A.
- b) Determine the characteristic polynomial, the eigenvalues and eigenspaces of A.
- c) Prove or disprove that A is diagonalizable.
- (2) Let K be a field and A, $B \in K^{n \times n}$ be matrices such that AB = BA. Suppose all eigenspaces of A and B are 1-dimensional. Show that A and B have the same eigenvectors.
- (3) Let G be a cyclic group of order n, written multiplicatively. Furthermore, let $m \in \mathbb{N}$ and $d = \gcd(m, n)$.
 - a) For $t \in \mathbb{N}$ define $\varphi_t : G \longrightarrow G, \ x \longmapsto x^t$. Show

$$\operatorname{im}(\varphi_m) = \operatorname{im}(\varphi_d)$$
 and $\ker(\varphi_m) = \ker(\varphi_d)$.

- b) Let b be any element of G. Show that the equations $x^m = b$ and $x^d = b$ have the same number of solutions in G.
- (4) Let G be a group of order $p \cdot q$, where p < q are primes. Let $x, y \in G$ of order p and q, respectively.
 - a) Argue that the cyclic subgroup $\langle y \rangle$ is normal in G.
 - b) Let $r \in \mathbb{N}$ be such that $xyx^{-1} = y^r$. Show that $r^p \equiv 1 \mod q$.
- (5) Let R be a commutative ring with identity. Suppose that for each $a \in R$ there exists some natural number $n \geq 2$ such that $a^n = a$ (note that n may depend on a). Show that every prime ideal of R is maximal.

- (6) Let A = K[X, Y] be the polynomial ring in two indeterminates over the field K, and consider the ideal I generated by $Y + X + X^3$ and $X^2 + 1$.
 - a) Show that $A/I \cong K[X]/(X^2+1)$.

Determine which of the indicated ideals is prime.

- b) The ideal I if $K = \mathbb{Q}$.
- c) The ideal I if $K = \mathbb{F}_p$, the finite field with p elements, where p = 4m + 1 for some integer $m \ge 1$.
- d) The ideal J = IS where S = K[X, Y], the power series ring in two variables over K.
- (7) Denote by \mathbb{F}_3 the field with 3 elements. For each of the following polynomials, find the size of its splitting field. Support your answer.
 - a) $f = (X^2 + 1)(X^2 + 2X + 1) \in \mathbb{F}_3[X].$
 - b) $g = (X^2 + 1)(X^3 + 2X + 2) \in \mathbb{F}_3[X].$
 - c) $h = (X^2 + 1)(X^2 + 2X + 2) \in \mathbb{F}_3[X].$
- (8) a) Let $L \mid K$ be a field extension and let $r, s \in \mathbb{N}$ such that $\gcd(r, s) = 1$. Suppose $c \in L$ is such that $c^r \in K$ and $c^s \in K$. Show that $c \in K$.
 - b) Let K be a field of characteristic p. Suppose $a \in K$, but $a \notin K^p$ (that is, a is not the p-th power of an element in K). Show that the polynomial $X^p a \in K[X]$ is irreducible.

[Hint: Work with a factorization of X^p-a over its splitting field. How many distinct roots does the polynomial have?]

- (9) a) State the primitive element theorem for field extensions.
 - b) Let α and β be roots of the polynomials X^2-3 and X^2-5 in $\mathbb{Q}[X]$, respectively, and let $L=\mathbb{Q}(\alpha,\beta)$. Explain why L is a simple field extension of \mathbb{Q} . Find an element $\gamma\in L$ such that $L=\mathbb{Q}(\gamma)$.
 - c) Let X, Y be indeterminates over \mathbb{F}_2 , the finite field with 2 elements. Let $L = \mathbb{F}_2(X, Y)$ and $K = \mathbb{F}_2(u, v)$, where

$$u = X + X^2, v = Y + Y^2.$$

Explain why L is a simple extension of K. Find an element $\gamma \in L$ such that $L = K(\gamma)$. [Hint: First show that X, Y, and X + Y are all algebraic of degree 2 over K.]