Algebra Prelim, January 6, 2016

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) In the real vector space $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ continuously differentiable}\}$ consider the subspace $V := \langle e_1, e_2, e_3, e_4 \rangle$, where

$$e_1(x) = e^x$$
, $e_2(x) = e^{2x}$, $e_3(x) = \sin(x)$, $e_4(x) = \cos(x)$.

Then $\mathcal{A}:=\{e_1,e_2,e_3,e_4\}$ forms a basis of V (you need not show this). Consider the linear map

$$T: V \longrightarrow V$$
, $f \longmapsto f'$ (the derivative of f).

- a) Give the matrix representation of T with respect to the basis A.
- b) Determine all eigenvalues of T in \mathbb{R} .
- c) For each eigenvalue determine the corresponding eigenspace of T. Make sure your answer is a subspace of V (i.e., it consists of functions).
- d) Is T diagonalizable over \mathbb{R} ?
- e) Is T triangulable over \mathbb{R} ?
- (2) Let V be a finite-dimensional inner product space (over \mathbb{R} or \mathbb{C}) with inner product denoted by $\langle \cdot, \cdot \rangle$. Let T be a self-adjoint linear map on V, that is,

$$\langle v, T(w) \rangle = \langle T(v), w \rangle$$
 for all $v, w \in V$.

As usual, the powers of T are defined as $T^k := T \circ \cdots \circ T$ (k times). Show

$$T \text{ nilpotent} \Longrightarrow T = 0.$$

- (3) Let G be a finite group and $N \subseteq G$ be a normal subgroup of G. Let p be a prime divisor of |N| and suppose N has a unique p-Sylow subgroup.
 - a) Suppose p does not divide [G:N]. Show that G has a unique p-Sylow subgroup.
 - b) Suppose p divides [G:N]. Give an example where the conclusion from (a) does not hold.

[Hint: Consider, for example, a group of order 12.]

- (4) Let $n \geq 5$ and let A_n denote the alternating group on n symbols.
 - a) Let $G \leq A_n$ be a subgroup such that $[A_n : G] < n$. Show that $G = A_n$. [Hint: Recall that A_n acts on the set of left cosets of G.]
 - b) Is there a subgroup $H \leq A_n$ such that $[A_n : H] = n$? Support your answer.

$$\operatorname{Int}(\mathbb{Z}) := \{ f \in \mathbb{Q}[x] \mid f(m) \in \mathbb{Z} \text{ for all } m \in \mathbb{N} \}.$$

You do not have to prove that $\operatorname{Int}(\mathbb{Z})$ is a subring of $\mathbb{Q}[x]$, but make sure you understand this. Note that for all $n \in \mathbb{N}$ the polynomial $\binom{x}{n} := \frac{x(x-1)\cdots(x-n+1)}{n!}$ is in $\operatorname{Int}(\mathbb{Z})$ because binomial coefficients $\binom{n}{n}$ are integers.

- a) Determine the group of units of $Int(\mathbb{Z})$.
- b) Show that 2 is irreducible but not prime in the ring $Int(\mathbb{Z})$.
- (6) For which $n \in \mathbb{N}$ is the polynomial $\sum_{i=0}^{n} x^{i} \in \mathbb{Q}[x]$ irreducible? Support your answer.
- (7) Let $K \subseteq \mathbb{C}$ be a subfield such that $K \mid \mathbb{Q}$ is Galois with cyclic Galois group of order 4.
 - a) Show that K has a unique subfield L such that $[L:\mathbb{Q}]=2$.
 - b) Show that $\sigma(K) \subseteq K$, where σ denotes complex conjugation.
 - c) Show that the subfield L in part (a) is contained in \mathbb{R} .
- (8) Let q be a prime power and $m \in \mathbb{N}$. Consider the finite fields $\mathbb{F}_q \subset \mathbb{F}_{q^m}$ and the map

$$\tau: \mathbb{F}_{q^m} \longrightarrow \mathbb{F}_{q^m}, \quad a \longmapsto \sum_{i=0}^{m-1} a^{q^i}.$$

Show the following.

- a) τ is \mathbb{F}_q -linear.
- b) im $(\tau) \subseteq \mathbb{F}_q$, where im (τ) denotes the image of the map τ .
- c) τ is not the zero map.
- d) im $(\tau) = \mathbb{F}_q$.
- (9) Let $K \subseteq \mathbb{C}$ be the splitting field of $f = x^5 2$ over \mathbb{Q} .
 - a) Show that $[K:\mathbb{Q}] = 20$.
 - b) Show that there exists a unique subfield L of K such that [K:L]=5.
 - c) Give the subfield L explicitly.