Algebra Prelim, January 4, 2017

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- (1) Let A be an $n \times n$ matrix over an algebraically closed field K. Prove that $A^n = 0$ if and only if $\lambda I_n A$ is invertible for all nonzero $\lambda \in K$. (Here I_n denotes the identity matrix.)
- (2) Let V be a 4-dimensional vector space over a field K, and let $T: V \to V$ be a linear map with characteristic polynomial $\chi_T = x^4 x^3$. Prove:
 - a) T is not surjective.
 - b) V has T-invariant subspaces of dimensions 1, 2, and 3.
- (3) Let p be a prime number, and consider the group $G = C_{p^5} \times C_{p^6} \times C_{p^7} \times C_{p^8} \times C_{p^9}$, where C_n denotes a cyclic group of order n.
 - a) How many elements in C_{p^k} have order at most p^i if $i \leq k$?
 - b) How many elements in G have order p^7 ?
- (4) a) Give the definition of a solvable group.
 - b) Let p < q be prime numbers, and let G be a group of order pq^n , where n is any positive integer. Show that G is solvable.
- (5) Consider the ring of Gaussian integers $R = \mathbb{Z}[i]$. Determine all ring homomorphisms $R \times R \to R$ that map the identity of $R \times R$ onto the identity of R.
- (6) Let R be an integral domain such that the set of nonzero ideals of R contains a minimal element I (with respect to inclusion). Prove that R is a field. (Hint: For a nonzero $a \in I$ consider its square a^2 .)
- (7) Let $f \in K[x]$ be an irreducible polynomial of degree n over a field K. Let L/K be a field extension of degree m. If m and n are relatively prime, then show that f is irreducible in L[x].

- (8) Let \mathbb{F}_q denote a finite field with $q = p^n$ elements, where p is a prime number.
 - a) Prove that the map $\varphi: \mathbb{F}_q \to \mathbb{F}_q, \ a \mapsto a^p a$, is \mathbb{F}_p -linear.
 - b) Consider the polynomial $f = x^{p^{n-1}} + x^{p^{n-2}} + \cdots + x^p + x$ and the sets

$$S = \{a^p - a \mid a \in \mathbb{F}_q\},$$

$$T = \{b \in \mathbb{F}_q \mid f(b) = 0\}.$$

Show that S = T.

- (9) Let p be a prime number and suppose the polynomial $f = x^p a \in \mathbb{Q}[x]$ is irreducible. Let $\zeta \in \mathbb{C}$ be a primitive p-th root of unity, and consider the field $K = \mathbb{Q}(b,\zeta)$, where $b \in \mathbb{C}$ is any root of f.
 - a) Prove that the field extension K/\mathbb{Q} is a Galois extension.
 - b) Determine the order of the Galois group G of K over \mathbb{Q} .
 - c) If P is a subgroup of G with order p, then show that P is a normal subgroup and that G/P is a cyclic group. Furthermore, describe the fixed field of K with respect to P explicitly.