Algebra Prelim, January 20, 2021

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

Let \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} denote the set of integers, rational numbers, real numbers, and complex numbers, respectively.

- (1) Let A be an $n \times n$ matrix of rank n 1 over a field K.
 - a) For k > 0 let r_k be the rank of the matrix A^k . What are the possible values of r_k ?
 - b) Suppose that $A^{\ell} = 0$ for some $\ell > 0$, show that $A^{k} = 0$ for $k \ge n$.
- (2) Let W be a subspace of \mathbb{R}^n and let $W^{\perp} = \{v \in \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \in W\}$. Prove that $\mathbb{R}^n = W \oplus W^{\perp}$.
- (3) Let G be a group of order 60 whose Sylow 3-subgroup is normal. Prove that its Sylow 5-subgroup is also normal.
- (4) Let a finite group G act on a finite set A. Suppose that this action is faithful (recall that this means that the kernel of the homomorphism from G to Sym(A) induced by this action is trivial) and transitive (recall that this means that for all $a, b \in A$, there exists $g \in G$ such that g(a) = b). For $a \in A$, let G_a denote the stabilizer of a in G.
 - a) For $a \in A$ and $\sigma \in G$, prove that $G_{\sigma(a)} = \sigma G_a \sigma^{-1}$.
 - b) For $a \in A$, prove that $\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = {id}$.
 - c) Suppose that G is abelian. Prove that |G| = |A|.
- (5) Let R be a finite (not necessarily commutative) ring with multiplicative identity 1_R . Prove that if $a \in R$ is nonzero and is not a zero divisor, then a is a unit in R.

- (6) Let R be the quotient ring $\mathbb{C}[x, y, z, w]/(xy zw)$.
 - a) Show that R is an integral domain.
 - b) Show that R is not a UFD.
- (7) Let \mathbb{F}_q be the finite field of cardinality q. Let $f \in \mathbb{F}_q[x]$ be an irreducible polynomial of degree n and let α be a root of f in an extension field of \mathbb{F}_q .
 - a) Find $[\mathbb{F}_q(\alpha) : \mathbb{F}_q].$
 - b) Prove that $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{n-1}}$ are *n* distinct roots of *f*.
 - c) Argue that $\mathbb{F}_q(\alpha)/\mathbb{F}_q$ is a Galois extension.
- (8) Let z ∈ C be a primitive nth root of 1, n ≥ 3. Let y = z + z⁻¹ and let K = Q(y).
 a) Find (with proof) [K : Q].
 - b) Find $\mathbb{Q}(z) \cap \mathbb{R}$ and $[\mathbb{Q}(z) \cap \mathbb{R} : \mathbb{Q}]$.
- (9) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 whose splitting field K over \mathbb{Q} has Galois group $G = S_4$. Let θ be a root of f(x).
 - a) Prove that $\mathbb{Q}(\theta)$ is a field extension of \mathbb{Q} of degree 4.
 - b) Prove that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}(\theta)$.