Algebra Prelim, January 20, 2021

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

Let $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the set of integers, rational numbers, real numbers, and complex numbers, respectively.
(1) Let A be an $n \times n$ matrix of rank $n-1$ over a field K.
a) For $k>0$ let r_{k} be the rank of the matrix A^{k}. What are the possible values of r_{k} ?
b) Suppose that $A^{\ell}=0$ for some $\ell>0$, show that $A^{k}=0$ for $k \geq n$.
(2) Let W be a subspace of \mathbb{R}^{n} and let $W^{\perp}=\left\{v \in \mathbb{R}^{n} \mid v \cdot w=0\right.$ for all $\left.w \in W\right\}$. Prove that $\mathbb{R}^{n}=W \oplus W^{\perp}$.
(3) Let G be a group of order 60 whose Sylow 3 -subgroup is normal. Prove that its Sylow 5 -subgroup is also normal.
(4) Let a finite group G act on a finite set A. Suppose that this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ induced by this action is trivial) and transitive (recall that this means that for all $a, b \in A$, there exists $g \in G$ such that $g(a)=b)$. For $a \in A$, let G_{a} denote the stabilizer of a in G.
a) For $a \in A$ and $\sigma \in G$, prove that $G_{\sigma(a)}=\sigma G_{a} \sigma^{-1}$.
b) For $a \in A$, prove that $\cap_{\sigma \in G} \sigma G_{a} \sigma^{-1}=\{\mathrm{id}\}$.
c) Suppose that G is abelian. Prove that $|G|=|A|$.
(5) Let R be a finite (not necessarily commutative) ring with multiplicative identity 1_{R}. Prove that if $a \in R$ is nonzero and is not a zero divisor, then a is a unit in R.
(6) Let R be the quotient ring $\mathbb{C}[x, y, z, w] /(x y-z w)$.
a) Show that R is an integral domain.
b) Show that R is not a UFD.
(7) Let \mathbb{F}_{q} be the finite field of cardinality q. Let $f \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree n and let α be a root of f in an extension field of \mathbb{F}_{q}.
a) Find $\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\right]$.
b) Prove that $\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{n-1}}$ are n distinct roots of f.
c) Argue that $\mathbb{F}_{q}(\alpha) / \mathbb{F}_{q}$ is a Galois extension.
(8) Let $z \in \mathbb{C}$ be a primitive $n^{t h}$ root of $1, n \geq 3$. Let $y=z+z^{-1}$ and let $K=\mathbb{Q}(y)$.
a) Find (with proof) $[K: \mathbb{Q}]$.
b) Find $\mathbb{Q}(z) \cap \mathbb{R}$ and $[\mathbb{Q}(z) \cap \mathbb{R}: \mathbb{Q}]$.
(9) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 whose splitting field K over \mathbb{Q} has Galois group $G=S_{4}$. Let θ be a root of $f(x)$.
a) Prove that $\mathbb{Q}(\theta)$ is a field extension of \mathbb{Q} of degree 4.
b) Prove that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}(\theta)$.

