

Algebra Prelim, January, 2026

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Consider the following matrix.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- Find the characteristic polynomial of A .
- Let $I \subset \mathbb{C}[x]$ be the ideal of polynomials $p(x)$ with the property that $p(A) = 0$. Find a polynomial that generates I .

(2) Let V be a vector space of dimension n , and let $T : V \rightarrow V$ be a linear transformation with $T^2 = 0$.

- Show that $\text{Im}(T) \subseteq \text{Ker}(T)$.
- Show that the rank of T is at most $\frac{n}{2}$.

(3) Let G be a group of order 105.

- Show that G must have a normal Sylow 5-group or a normal Sylow 7-group.
- Prove that G has a normal subgroup of order 35.

(4) Let G be a finite group and let $H \subset G$ be a subgroup with $[G : H] = p$, where p is the smallest prime dividing the order of G . Prove that H is a normal subgroup of G .

(5) Let R be a commutative ring with identity.

- Define what it means for an ideal of R to be maximal.
- Define what it means for an ideal of R to be prime.
- Prove that if R is a principal ideal domain (PID) then a nonzero ideal is prime if and only if it is maximal.

(6) Consider the ideal $I = \langle 5, x^2 + 2 \rangle$ in the ring $\mathbb{Z}[x]$. Prove that $\mathbb{Z}[x]/I$ is a field.

(7) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- Determine $[K : \mathbb{Q}]$.
- Find $\text{Gal}(K/\mathbb{Q})$ and all intermediate subfields between \mathbb{Q} and K .

(8) Let $f(x) = x^4 - 5$.

- Find the splitting field K of $f(x)$ over \mathbb{Q} .
- Show that $\text{Gal}(K/\mathbb{Q})$ is the dihedral group D_8 (the symmetries of a square).

(9) Let F be a finite field of characteristic p . Recall that the Frobenius map $\Phi : F \rightarrow F$ is the map which takes an element $a \in F$ to a^p .

- Show that Φ is a field automorphism.
- Show that every element in F has a p -th root.