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Algebra Prelim
Provide proofs for all statements, citing any theorems
that may be needed.

In the following, ZZ denotes the ring of integers. We write ZZn for
ZZ/nZZ.
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1. Let C be a cyclic group of order 6. Find necessary and sufficient con-
ditions on a group G in order that C × G be a cyclic group.

2. Let R be a non-zero ring containing 1 �= 0 such that the function
r �→ r2 from R to R is a homomorphism of rings. Prove that R is a
commutative ring of characteristic 2.

3. Prove that the group of automorphisms of the abelian group ZZ3 × Z
has 12 elements.

4. Precisely state the Sylow Theorems.

Let G be a group of order 105.

Let np(G) denote the number of p-Sylow subgroups of G as usual.

For each prime p less than 10 determine possible values of np(G) and
the corresponding estimate of number of elements of order p in G.

Using these calculations or otherwise prove that G cannot be simple.

5. Let k ⊂ L be a Galois extension where |Gal(L/k)| = 75.

(a) Prove that there is a unique field F with k ⊂ F ⊂ L such that
[F : k] = 3.

(b) Prove that the field F constructed above is a Galois extension of
k.

Please turn over.
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6. Let V be a 3-dimensional vector space over a field k. Assume that you
have three linear transformations f, g, h from V to k with the following
properties.

• There is u ∈ V such that f(u) = 1, g(u) = h(u) = 0.

• There is v ∈ V such that g(v) = h(v) = 1.

• There is w ∈ V such that g(w) = 2, h(w) = 3.

Define a linear transformation from V to k3 by L(t) =

⎛
⎜⎝

f(t)
g(t)
h(t)

⎞
⎟⎠.

Answer the following:

(a) Determine if L is surjective.

(b) Determine if L is injective.

(c) Determine Ker(f)
⋂

Ker(g)
⋂

Ker(h).

7. Consider the polynomial X5−2 over ZZ11 and let R = ZZ11[X]/(X5−2).
As usual, identify ZZ11 with its image in R.

Define the ring homomorphism σ : R → R by σ(t) = t11 for all t ∈ R.

(a) Determine the order of σ (i.e. the smallest n such that σn = Id).

(b) Using the above or otherwise, argue that R is a field.

(c) Determine the Galois group of R over ZZ11.

8. Give the precise definition of a prime ideal and a maximal ideal in a
commutative ring T with 1 �= 0.

Let R = ZZ[X].

(a) Determine with proof if I = (X4 + 2, X2 + 1) ⊂ R is prime or
maximal or neither.

(b) Determine with proof if J = (X4 + X, X2 + 1) ⊂ R is prime or
maximal or neither.
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