Algebra Prelim

June 4, 2009

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- **1.** Let V be a vector space over a field F with basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ and let a_1, a_2, a_3 be elements of F. Define a linear transformation on V by the rules $T(\mathbf{v}_i) = \mathbf{v}_{i+1}$ if i < 4 and $T(\mathbf{v}_4) = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3$.
 - (a) Determine the matrix of T with respect to the given basis.
 - (b) Determine the characteristic polynomial of T.
- 2. In the vector space V of all polynomials $P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ of degree up to three and coefficients in \mathbb{R} , let W be the subset of all polynomials with

$$\int_0^1 P(x) \, dx = 0$$

Verify that W is a subspace of V, determine the dimension of W and find a basis of W.

- **3.** Let N be a normal subgroup of a group G with index [G : N] = n. Let $a \in G$ with $a^m \in N$ for some positive integer m. Assume that gcd(m, n) = 1. Prove that $a \in N$.
- **4.** Let *R* be a commutative ring. Suppose that every ideal *I* of *R* is prime. Prove that *R* is a field. (**Hint:** if $x \in R$, then $x \cdot x \in (x^2)$.)
- **5.** Let *R* be a commutative ring. Let *P* be a prime ideal and let *I* and *J* be ideals of *R*. If $I \cap J \subset P$, prove that either $I \subset P$ or $J \subset P$.
- 6. (a) Find the unique (up to associates) factorization of 65 into a product of irreducibles in the ring of the Gaussian integers Z[i].
 - (b) Let $R = \mathbb{Q}[x]$. Let $f(x) = x^5 14x^3 98x + 7 \in R$ and assume that f(x) divides the product a(x)b(x) of two polynomials $a(x), b(x) \in R$. Prove that f(x) divides either a(x) or b(x).
 - (c) Show that $Y^4 + 2x^2Y^3 x$ is an irreducible polynomial in $\mathbb{Q}(x)[Y]$.

- 7. Let $f = x^3 3x + 1 \in \mathbb{Q}[x]$ and $u \in \mathbb{C}$ be a root of f.
 - (a) Show that f is the minimal polynomial of u over \mathbb{Q} .
 - (b) Write u^4 and u^6 as linear combination of 1, u, and u^2 with coefficients in \mathbb{Q} .
 - (c) Show that the element $w = 1 + u^2$ is nonzero and write w^{-1} as linear combination of 1, u, and u^2 with coefficients in \mathbb{Q} .
- 8. Let K/k be a field extension of characteristic $p \neq 0$, and let α be a root in K of an irreducible polynomial $f(x) = x^p x a$ over k.
 - (a) Prove that $\alpha + 1$ is also a root of f(x).
 - (b) Prove that the Galois group of f over k is cyclic of order p.
- **9.** Let $f = X^{12} 1$.
 - (a) Compute the Galois group of f over the rational numbers. Be sure to specify each element explicitly as an automorphism.
 - (b) Determine all subfields of the splitting field of f over the rational numbers.
- **10.** Let $k \subset K$ be a Galois extension where |Gal(K/k)| = 45.
 - (a) Prove that there is a *unique* field L with $k \subset L \subset K$ such that [L:k] = 5.
 - (b) Prove that the field L constructed above is a Galois extension of k.