Algebra Prelim

June 4, 2009

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

1. Let V be a vector space over a field F with basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ and let a_{1}, a_{2}, a_{3} be elements of F. Define a linear transformation on V by the rules $T\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i+1}$ if $i<4$ and $T\left(\mathbf{v}_{4}\right)=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}$.
(a) Determine the matrix of T with respect to the given basis.
(b) Determine the characteristic polynomial of T.
2. In the vector space V of all polynomials $P(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ of degree up to three and coefficients in \mathbb{R}, let W be the subset of all polynomials with

$$
\int_{0}^{1} P(x) d x=0 .
$$

Verify that W is a subspace of V, determine the dimension of W and find a basis of W.
3. Let N be a normal subgroup of a group G with index $[G: N]=n$. Let $a \in G$ with $a^{m} \in N$ for some positive integer m. Assume that $\operatorname{gcd}(m, n)=1$. Prove that $a \in N$.
4. Let R be a commutative ring. Suppose that every ideal I of R is prime. Prove that R is a field. (Hint: if $x \in R$, then $x \cdot x \in\left(x^{2}\right)$.)
5. Let R be a commutative ring. Let P be a prime ideal and let I and J be ideals of R. If $I \cap J \subset P$, prove that either $I \subset P$ or $J \subset P$.
6. (a) Find the unique (up to associates) factorization of 65 into a product of irreducibles in the ring of the Gaussian integers $\mathbb{Z}[i]$.
(b) Let $R=\mathbb{Q}[x]$. Let $f(x)=x^{5}-14 x^{3}-98 x+7 \in R$ and assume that $f(x)$ divides the product $a(x) b(x)$ of two polynomials $a(x), b(x) \in R$. Prove that $f(x)$ divides either $a(x)$ or $b(x)$.
(c) Show that $Y^{4}+2 x^{2} Y^{3}-x$ is an irreducible polynomial in $\mathbb{Q}(x)[Y]$.
7. Let $f=x^{3}-3 x+1 \in \mathbb{Q}[x]$ and $u \in \mathbb{C}$ be a root of f.
(a) Show that f is the minimal polynomial of u over \mathbb{Q}.
(b) Write u^{4} and u^{6} as linear combination of $1, u$, and u^{2} with coefficients in \mathbb{Q}.
(c) Show that the element $w=1+u^{2}$ is nonzero and write w^{-1} as linear combination of $1, u$, and u^{2} with coefficients in \mathbb{Q}.
8. Let K / k be a field extension of characteristic $p \neq 0$, and let α be a root in K of an irreducible polynomial $f(x)=x^{p}-x-a$ over k.
(a) Prove that $\alpha+1$ is also a root of $f(x)$.
(b) Prove that the Galois group of f over k is cyclic of order p.
9. Let $f=X^{12}-1$.
(a) Compute the Galois group of f over the rational numbers.

Be sure to specify each element explicitly as an automorphism.
(b) Determine all subfields of the splitting field of f over the rational numbers.
10. Let $k \subset K$ be a Galois extension where $|\operatorname{Gal}(K / k)|=45$.
(a) Prove that there is a unique field L with $k \subset L \subset K$ such that $[L: k]=5$.
(b) Prove that the field L constructed above is a Galois extension of k.

