Algebra Prelim

June 2, 2010

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

1. Let V be the subspace of the \mathbb{R} -vector space of differentiable functions $\mathbb{R} \to \mathbb{R}$ that is generated by f, sin, cos, and exp, where f(x) = 1 and $\exp(x) = e^x$ for all $x \in \mathbb{R}$. Consider the linear map

$$\varphi: V \to V, \ g \mapsto g + g'.$$

- (a) Determine the presentation matrix of φ with respect to the basis $\{f, \sin, \cos, \exp\}$. (You may use without proof that this is indeed a basis of V.)
- (b) Find all real eigenvalues of φ .
- (c) Determine a basis of the eigenspace of φ to each real eigenvalue.
- 2. Let A be an orthogonal matrix, that is, a square matrix with real entries such that $A \cdot A^T$ is the identity matrix. Show:
 - (a) If v and w are eigenvectors of A to the eigenvalues 1 and -1, respectively, then $v^T \cdot w = 0$.
 - (b) The matrix A is diagonalizable over the real numbers if and only if its minimal polynomial over \mathbb{R} divides the polynomial (X 1)(X + 1).
- **3.** Let *H* be a subgroup of a group *G*, and let $g \in G$ be any element. Assume that the right coset Hg equals *some* left coset of *H* in *G*. Show that then gH = Hg.
- 4. Let a, b be elements of finite order in a group G such that ab = ba and $\langle a \rangle \cap \langle b \rangle = \{e\}$, where e denotes the identity of G. Show that the order of ab is the positive least common multiple of the orders of a and b.
- 5. Let E/K be a Galois extension of degree 200. Prove that E has a unique subfield L containing K such that L/K is a Galois extension of degree 8.
- 6. Find a generator of the ideal I of the polynomial ring $\mathbb{F}_5[X]$ that is generated by $X^4 + 4X^3 + 2X + 4$ and $X^3 + 3X^2 + 3$ (in other words, find a generator of the principal ideal I).

7. Let K[X] be the polynomial ring over a field K, and consider

$$R := \{ f \in K[X] \mid f'(0) = 0 \},\$$

where f' denotes the derivative of f. Show:

- (a) R is a subring of K[X], thus it is an integral domain.
- (b) The elements X^2 and X^3 are irreducible in R.
- (c) R is not a factorial domain.
- 8. Let $\alpha := \sqrt[3]{5} + 1 \in \mathbb{R}$.
 - (a) Find the minimal polynomial f of α over \mathbb{Q} .
 - (b) Argue that α is the only real root of f. (Hint: Consider f(X+1).)
 - (c) Determine the automorphism group of the field $\mathbb{Q}(\alpha)$.
- **9.** Let $E \subset \mathbb{C}$ be the splitting field of $X^4 + 1$ over \mathbb{Q} . Determine explicitly all automorphisms and subfields of E.
- **10.** Let E/K be a Galois extension with Galois group G. Suppose there is an element $\alpha \in E$ such that $\sigma(\alpha) \neq \tau(\alpha)$ for all distinct automorphisms $\sigma, \tau \in G$. Prove that $E = K(\alpha)$. (Hint: Consider the Galois group of $E/K(\alpha)$.)