Algebra Prelim

June 5, 2013

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- 1. Let W be a subspace of $V = M_n(\mathbb{C})$, the \mathbb{C} -vector space of all $n \times n$ complex matrices. Assume that every nonzero matrix in W is invertible. Prove that $\dim_{\mathbb{C}} W \leq 1$.
- 2. Let K be a field with 8 elements, say $K = \mathbb{Z}_2[x]/(x^3 + x + 1)$.
 - (a) Prove that the Frobenius map, defined by $\varphi(\alpha) = \alpha^2$ for any $\alpha \in K$, is a linear transformation of K, when K is viewed as a vector space over \mathbb{Z}_2 .
 - (b) Choose a basis for the \mathbb{Z}_2 -vector space K and write the matrix representation of φ with respect to this basis.
 - (c) Determine the eigenvalues and the eigenvectors of φ . (**Hint:** you have to perform your calculations in a suitable field extension of \mathbb{Z}_2 in order to find all the eigenvalues and eigenvectors of φ).
- 3. Let G be a group of order 48. Show that G must contain a normal subgroup of order 8 or 16. (Hint: If $n_2(G) > 1$ let G act on $Syl_2(G)$ via conjugation.)
- **4.** Let p be prime number and let G be a group of order p^n . Let H be a non-trivial normal subgroup of G and let Z(G) denote the center of G. Show that $H \cap Z(G)$ is non-trivial.
- 5. Let $n, m \ge 1$ be positive integers with greatest common divisor d. Show that the ideal of $\mathbb{Q}[x]$ generated by $x^m 1$ and $x^n 1$ is principal and generated by $x^d 1$.
- **6.** Let R be an integral domain with fraction field K.
 - (a) Assume in addition that R is a unique factorization domain. Suppose that the monic polynomial

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0} \in R[x]$$

has a root $\alpha \in K$. Show that $\alpha \in R$.

(b) Use part (a) to argue that the subring $R = k[t^2, t^3]$ of the polynomial ring k[t], where t is an indeterminate over the field k, is not a unique factorization domain. (Hint: consider, for example, the polynomial $p(x) = x^2 - t^2 \in R[x]$.)

- 7. Let E be a field extension of \mathbb{Z}_p , where p is a prime, contained in the algebraic closure $\overline{\mathbb{Z}_p}$. Let f be an irreducible polynomial in $\mathbb{Z}_p[x]$ and let $\alpha, \beta \in \overline{\mathbb{Z}_p}$ be roots of f. If $\alpha \in E$, show that $\beta \in E$.
- 8. Let $f = x^6 + 3 \in \mathbb{Q}[x]$ and let $\alpha \in \mathbb{C}$ denote a 6-th root of -3. Set $\zeta = \frac{1}{2}(1 + \alpha^3) \in \mathbb{C}$.
 - (a) Show that ζ is a primitive 6-th root of unity and $K = \mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q} .
 - (b) Show that $Gal(K/\mathbb{Q}) = {\sigma_0, \ldots, \sigma_5}$, where $\sigma_i(\alpha) = \zeta^i \alpha$ for $i = 0, \ldots, 5$.
 - (c) Show that $\sigma_i(\zeta) = \zeta$ for i = 0, 2, 4 and $\sigma_i(\zeta) = \zeta^{-1}$ for i = 1, 3, 5.
 - (d) Determine the order of each automorphism σ_i and show that $\operatorname{Gal}(K/\mathbb{Q})$ is not cyclic.