Algebra Prelim, May 27, 2015

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let K be a field of characteristic not equal to 2. Let

$$M := \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \in K^{2 \times 2}$$

and consider the linear map

$$\varphi: K^{2\times 2} \longrightarrow K^{2\times 2}, \ X \longmapsto MX - XM.$$

- a) Find the matrix representation of φ with respect to the standard basis of $K^{2\times 2}$.
- b) Find $\ker \varphi$.

[You may want to find first the kernel (null space) of the matrix representation from

- a). But your final answer to b) needs to be a subspace of $K^{2\times 2}$.]
- c) Find all eigenvalues of φ .
- d) Show that φ is diagonalizable.
- (2) Let K be a field, a an element in a field extension such that a is algebraic over K. Denote by $f \in K[x]$ the minimal polynomial of a over K. Consider the K-vector space V := K[x]/(f) and the K-linear map

$$\varphi: V \longrightarrow V, \quad g+(f) \longmapsto xg+(f).$$

Thus, $\varphi \in \text{End}(V)$. Show that the minimal polynomial of φ is given by f.

(3) Let G be a finite group and $\mathcal{X} = \{H \leq G\}$, that is, \mathcal{X} is the set of all subgroups of G. Consider the action

$$G \times \mathcal{X} \longrightarrow \mathcal{X}, \ (g, H) \longmapsto gHg^{-1}$$

and denote by \mathcal{O}_H the orbit of $H \in \mathcal{X}$. Show the following.

- a) For any $H \in \mathcal{X}$ we have $|\mathcal{O}_H| = 1 \iff H \leq G$.
- b) Let p be a prime and G be a nontrivial p-group. Let $n := |\mathcal{X}|$ and m be the number of normal subgroups of G. Show that $p \mid (n m)$.
- (4) Consider the group $G := (\mathbb{Q}, +)/(\mathbb{Z}, +)$.
 - a) Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and suppose $\gcd(a, b) = 1$. Show that $\langle \frac{a}{b} + \mathbb{Z} \rangle = \langle \frac{1}{b} + \mathbb{Z} \rangle$ for the cyclic subgroups of G generated by the given elements.
 - b) Show that for each $n \in \mathbb{N}$ there exists a unique subgroup of order n.

- (5) Let K be a field and $f, g \in K[x]$. Show that the following two statements are equivalent.
 - i) There exists a ring homomorphism of the form

$$\varphi: K[x]/(f) \longrightarrow K[x]/(g), \ p+(f) \longmapsto p+(g).$$

- ii) g divides f in K[x].
- (6) Consider the ring $\mathbb{Z}[i]$ of Gaussian integers, and let f be the ring homomorphism

$$f: \mathbb{Z} \longrightarrow \mathbb{Z}[i]/(3+2i), \ c \longmapsto c+(3+2i).$$

Show the following.

- a) f is surjective.
- b) $\ker f = 13\mathbb{Z}$.
- c) $|\mathbb{Z}[i]/(3+2i)| = 13.$

[Hint: Have in mind that 2 and 3 are relatively prime.]

- (7) Let [K : F] = n and let $a \in K$ such that there exist automorphisms $\sigma_1, \ldots, \sigma_n \in \operatorname{Aut}(K \mid F)$ with $\sigma_i(a) \neq \sigma_j(a)$ whenever $i \neq j$. Show K = F(a).
- (8) Consider the field extension $\mathbb{F}_{5^4} \mid \mathbb{F}_5$.
 - a) Determine the number of elements $a \in \mathbb{F}_{5^4}$ satisfying $\mathbb{F}_{5^4} = \mathbb{F}_5(a)$.
 - b) Determine the number of irreducible polynomials of degree 4 in $\mathbb{F}_5[x]$.
- (9) Denote by Z_n the cyclic group of order n.
 - a) Find a field extension $K \mid \mathbb{Q}$ such that $Gal(K \mid \mathbb{Q}) \cong \mathbb{Z}_5$. [Hint: Start with a primitive 11th root of unity.]
 - b) Let $L = K(\sqrt{2})$. Argue that $L \mid \mathbb{Q}$ is Galois and determine the cardinality of $\operatorname{Gal}(L \mid \mathbb{Q})$.
 - c) Give the isomorphism type of the Galois group $\operatorname{Gal}(L \mid \mathbb{Q})$ and describe the automorphisms explicitly.