Algebra Prelim, June 7, 2016

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) In the real vector space of continuous real-valued functions defined on \mathbb{R} consider the functions $p_i, i = 0, 1, 2$, and exp, defined as

$$p_i(x) = x^i$$
, $\exp(x) = e^x$ for all $x \in \mathbb{R}$.

Set $V := \operatorname{span}_{\mathbb{R}} \{p_0, p_1, p_2, \exp\}$ and consider the endomorphism $\sigma : V \longrightarrow V$ defined as

$$(\sigma f)(x) := f(x-1)$$
 for all $x \in \mathbb{R}$.

- a) Give the matrix representation of σ with respect to the basis $\{p_0, p_1, p_2, \exp\}$. (You need not show that this set is indeed a basis of V.)
- b) Determine all eigenvalues and find bases of all eigenspaces of σ .
- c) Is σ diagonalizable?
- d) Determine the minimal polynomial of σ .
- (2) Let V be an n-dimensional vector space over a field K, and let U be a k-dimensional subspace of V. Consider the set

$$M = \{ \varphi : V \to V \mid \varphi \text{ is linear and } \varphi(U) \subseteq U \}.$$

- a) Argue that M is a K-vector space.
- b) Determine the dimension of M.
- (3) Let G be a group with center Z. Assume that G/Z is cyclic. Show that G is abelian.
- (4) Let G be a finite group, and let p be the smallest prime divisor of the order of G. Suppose H is a subgroup of G with index p. Show that H is a normal subgroup of G. (Hint: Consider the permutation representation induced by the action of G on the cosets of H by left multiplication.)

- (5) Let R, S be commutative rings with identity.
 - a) Prove that every ideal of the product ring $R \times S$ is of the form $I \times J$, where I is an ideal of R and J is an ideal of S.
 - b) Describe all prime ideals of $R \times S$ in terms of the ideals of R and S.
- (6) Consider the ring $R := \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ differentiable}\}$ and the ideal

$$I := \{ f \in R \mid f(2) = f'(2) = 0 \}.$$

(You need not show that I is an ideal.)

- a) Find a suitable map $R \to \mathbb{R}[X]/(X^2)$ to show that the rings R/I and $\mathbb{R}[X]/(X^2)$ are isomorphic.
- b) Show that every ideal of R/I is a principal ideal.
- (7) Let $n \in \mathbb{N}$, and let K be a field whose characteristic does not divide n. Consider $f = X^n c \in K[X]$ for some $c \neq 0$, and let E be a splitting field of f over K. Thus, E contains a primitive n-th root of unity, say ζ . (You need not show this.)
 - a) Argue, for any root $\alpha \in E$ of f, that $E = K(\zeta, \alpha)$.
 - b) Suppose $\zeta \in K$. Show that all irreducible factors of f have degree [E:K], and conclude that [E:K] divides n.
 - c) Assume $\zeta \notin K$. Suppose $n = 2^k$ is a power of 2. Use induction to prove that $[K(\zeta):K]$ is a power of 2.
 - d) Suppose n is a power of 2. Use (b) and (c) to show that [E:K] is a power of 2.
- (8) Let E be a splitting field of $f = X^6 + 1$ over \mathbb{Q} .
 - a) Describe all automorphisms of E explicitly, and determine the isomorphism type of this automorphism group.
 - b) Describe all subfields of E by specifying suitable elements that one needs to adjoin to \mathbb{Q} .
- (9) Let $\alpha := \sqrt{5 + 2\sqrt{6}} \in \mathbb{R}$.
 - a) Compute the minimal polynomial f of α over \mathbb{Q} .
 - b) Show that f splits into linear factors over $\mathbb{Q}(\alpha)$. (Hint: Check that $\frac{1}{\alpha}$ is a root of f.)
 - c) Find the isomorphism type of the Galois group of f over \mathbb{Q} .
 - d) How many subfields does $\mathbb{Q}(\alpha)$ have?