Algebra Prelim, June 6, 2017

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let $n \in \mathbb{N}$, and let K be a field whose characteristic does not divide n. Consider the $n \times n$ matrix with entries in K

$$A = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

- a) Show that A is idempotent, that is, $A^2 = A$.
- b) Find an invertible matrix S such that $S^{-1}AS$ is a diagonal matrix. Specify S and the diagonal matrix explicitly.
- (2) Let $\varphi, \psi: V \to V$ be endomorphisms (linear maps) on a finite-dimensional vector space over a field K such that $\varphi \circ \psi = \psi \circ \varphi$. Denote the identity map on V by id_V .
 - a) For every $\mu \in K$, show that $(\mu \operatorname{id}_V \varphi)$ maps eigenvectors of ψ onto eigenvectors of ψ .
 - b) Assume V has a basis consisting of eigenvectors of ψ and a basis consisting of eigenvectors of φ . Prove that V has a basis consisting of vectors that are eigenvectors of both φ and ψ .
- (3) Consider the symmetric group S_8 on 8 elements.
 - a) How many elements of S_8 can be written as a disjoint product of a 4-cycle and a 2-cycle?
 - b) Determine the number of elements in S_8 that have order four.
- (4) Let H be a subgroup of a group G with [G:H]=n. Prove that there is a normal subgroup N of G with $N \subset H$ such that $[G:N] \leq n!$.
- (5) Let K be a field, and consider the set $R = \{f \in K[x] \mid f'(1) = f''(1) = 0\}$. Show:
 - a) R is a subring of K[x].
 - b) $(x-1)^3$ and $(x-1)^4$ are irreducible elements of R.
 - c) R is not a UFD (aka factorial domain).

(6) Fix a prime number p, and consider the subset

$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ coprime}, p \text{ does not divide } b \right\} \subset \mathbb{Q}.$$

- a) Show that R is a subring of \mathbb{Q} .
- b) Determine the units of R.
- c) Prove that each nonzero ideal of R is principal and equal to (p^e) for some integer $e \ge 0$.
- d) Describe explicitly the quotient field of R as a subfield of \mathbb{Q} .
- (7) Let t be a variable. Show that the field extension $\mathbb{C}(t)/\mathbb{C}(t^{20})$ is Galois and determine the isomorphism type of its Galois group.
- (8) Let K be the splitting field of the polynomial $f = x^4 + x^3 + 1$ over \mathbb{F}_2 .
 - a) Determine K up to isomorphism.
 - b) Find the least $m \in \mathbb{N}$ such that f divides $x^m 1$ in $\mathbb{F}_2[x]$.
 - c) Let α be a root of f. Describe explicitly all roots of f.
- (9) a) Determine the Galois group of the polynomial $x^3 5$ over \mathbb{Q} explicitly.
 - b) Show that the real number $\sqrt[3]{5}$ is not contained in any cyclotomic field extension of the rational numbers.