Algebra Prelim, May 31, 2019

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let \mathbb{F}_3 be the field of order 3. Consider the matrix

$$M = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathbb{F}_3^{3 \times 3}.$$

Show that

$$\mathbb{F}_3[M] := \left\{ \left. \sum_{i=0}^n a_i M^i \, \middle| \, n \in \mathbb{N}_0, a_i \in \mathbb{F}_3 \right\} \right.$$

is a field of order 27.

- (2) Let A be an integral domain which contains a field $K \subset A$ and suppose that A is finite dimensional as a vector space over K. Show that A is a field extension of K.
- (3) Let G be a group and let [G, G] be the subgroup of G generated by the set $\{hgh^{-1}g^{-1} \mid h, g \in G\}$.
 - a) Let A be an abelian group. Show that if $\phi: G \to A$ is a group homomorphism, then $[G,G] \subset Ker(\phi)$.
 - b) Show that if H is a subgroup of G containing [G,G], then $H \subseteq G$ and G/H is an abelian group.
- (4) Let p be a prime and let G be a finite group with $Aut(G) \cong \mathbb{Z}/p\mathbb{Z}$.
 - a) Show that Aut(G) contains a subgroup isomorphic to G/Z(G).
 - b) Use (a) to show that G is abelian.
 - c) Use (b) to show that p = 2. [Hint: Make use of the map $f: G \to G$ given by $f(x) = x^{-1}$.]

(5) Show that the following polynomials are irreducible in the given ring.

a)
$$f = x^3 + (y^2 - 1)x^2 + 3(y^2 - y)x - 4y + 4 \in \mathbb{Q}[x, y].$$

b)
$$g = y^3 + xy + x^2(x-1)^2 \in \mathbb{R}[x, y].$$

c)
$$h = 5x^4 + 4x^3 - 2x^2 - 3x + 21 \in \mathbb{Q}[x].$$

(6) Consider the ring

$$R:=\mathbb{Z}[2i]=\{a+2bi\mid a,b\in\mathbb{Z}\}.$$

- a) Determine the field of fractions, Q, of R inside \mathbb{C} .
- b) Show that $f = x^2 + 1$ is reducible in Q[x], but irreducible in R[x].
- c) Argue that R is not a UFD.
- (7) Let $K \mid F$ be a finite, normal field extension and $L \mid K$ be any field extension. Furthermore, let $\varphi : K \longrightarrow L$ be an F-homomorphism. Show that $\varphi(K) \subseteq K$.
- (8) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - a) Show that $K \mid \mathbb{Q}$ is Galois and that $Gal(K \mid \mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - b) Show that $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
 - c) Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$.
- (9) Let K be a field of characteristic p > 0, let $a \in K$ and let β be a root of the polynomial $f(x) = x^p x a$.
 - a) Show that $\beta + 1$ is also a root of f(x). Conclude that $K(\beta)$ is a Galois extension of K.
 - b) Determine the Galois group of this extension. Give explicitly all its elements and give its isomorphism type.