Algebra Prelim, June 8, 2022

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- (1) Let $A \in \mathbb{C}^{n \times n}$.
 - a) Prove that A and its transpose, A^{T} , have the same eigenvalues.
 - b) Provide an example showing that A and A^{T} do not necessarily have the same eigenvectors.
- (2) Consider the group $G = GL_4(\mathbb{C})$ and define the subset

$$\mathcal{M} = \{ A \in G \mid A^2 = I_4 \},\$$

where I_4 is the identity matrix in G.

- a) Let $A \in \mathcal{M}$ and $\lambda \in \mathbb{C}$ be an eigenvalue of A. Show that $\lambda \in \{1, -1\}$.
- b) Show that every A in \mathcal{M} satisfies $\operatorname{eig}(A; 1) \oplus \operatorname{eig}(A; -1) = \mathbb{C}^4$ and conclude that A is diagonalizable. (Here $\operatorname{eig}(A; \lambda)$ denotes the eigenspace of A associated to λ .) [Hint: For $v \in \mathbb{C}^4$ the vector v + Av will be useful.]
- c) Consider the group action

$$G \times \mathcal{M} \longrightarrow \mathcal{M}, \ (S, A) \longmapsto S^{-1}AS.$$

Show that it partitions \mathcal{M} into 5 orbits.

- (3) Let G_1 and G_2 be finite groups of orders $n_1 > 1$ and $n_2 > 1$, respectively.
 - a) Suppose $gcd(n_1, n_2) = 1$. Show that $Aut(G_1 \times G_2) \cong Aut(G_1) \times Aut(G_2)$. (Aut(G) denotes the automorphism group of G).
 - b) Show that the statement in a) is not necessarily true if $gcd(n_1, n_2) > 1$.
- (4) Let G be a finite group and Aut(G) be its automorphism group. Recall the inner automorphism associated with $g \in G$ defined as

$$\phi_g: G \longrightarrow G, \ x \longmapsto gxg^{-1}.$$

Thus we have a well-defined group homomorphism $\phi: G \longrightarrow \operatorname{Aut}(G), g \longmapsto \phi_q$.

- a) Characterize the groups G for which ϕ is injective.
- b) Show that for $G = S_3$, the map ϕ is an isomorphism. [Hint: Use that $S_3 = \langle (12), (123) \rangle$ in order to show that $|\operatorname{Aut}(S_3)| \leq 6$.]

- (5) Let R, S be commutative rings with identity and $\phi : R \longrightarrow S$ be a ring homomorphism such that $\phi(1) = 1$.
 - a) Let P be a prime ideal of S. Show that $\phi^{-1}(P)$ is a prime ideal of R.
 - b) Give an example showing that the pre-image of a maximal ideal need not be a maximal ideal.
- (6) Let $R = \mathbb{Q}[x]/(x^{10} 1)$.
 - a) Determine a direct product of fields that is isomorphic to R.
 - b) Determine the number of ideals of R.
- (7) Consider the polynomials $f = x^2 2$ and $g = y^2 3$ with coefficients in \mathbb{F}_5 . Note that both polynomials are irreducible. Give an explicit isomorphism from $\mathbb{F}_5[x]/(f)$ to $\mathbb{F}_5[y]/(g)$ and make sure to explain why it is well-defined.
- (8) Let E | F be a finite field extension and let R be a subring of E such that $F \subseteq R$. Show that R is a field.
- (9) Let $E \mid F$ be a Galois extension of degree 55 with non-abelian Galois group $G := \text{Gal}(E \mid F)$.
 - a) Determine the number of Sylow-*p*-subgroups of G for $p \in \{5, 11\}$.
 - b) Show that there exists exactly one intermediate field L with $E \neq L \neq F$ such that $L \mid F$ is Galois. Determine [L : F].