Algebra Prelim, June 2, 2023

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even if you did not successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.

Good luck!

- (1) Let V be an n-dimensional vector space over a field F and let $\phi: V \longrightarrow V$ be a linear map. Recall that the rank of ϕ , denoted by $\operatorname{rk} \phi$, is defined as the dimension of the image of ϕ . Suppose $\phi^2 = 0$. Show that $\operatorname{rk} \phi \leq n/2$.
- (2) Let $A \in \mathbb{C}^{n \times n}$ be a unitary matrix, that is, $AA^* = I_n$, where $A^* = \bar{A}^\mathsf{T}$, that is, the complex conjugate transpose of A, and where I_n is the identity matrix in $\mathbb{C}^{n \times n}$.
 - a) Show that every eigenvalue of A has absolute value 1.
 - b) Show that if n is odd and all entries of A are in \mathbb{R} , then 1 or -1 is an eigenvalue of A.
- (3) Let G be a finite group and K a normal subgroup of G. Furthermore, let P be a Sylow p-subgroup of K. Show the following.
 - a) For all $q \in G$, the group qPq^{-1} is conjugate to P in K.
 - b) $G = KN_G(P)$, where $N_G(P)$ is the normalizer of P in G.
- (4) Let $\sigma = (1 \ 2 \ \dots \ n) \in S_n$. Show that the centralizer of σ is the subgroup $\langle \sigma \rangle$.
- (5) Consider the ring $R = \mathbb{Z}[\sqrt{-13}] = \{a + b\sqrt{-13} \mid a, b \in \mathbb{Z}\}$ and the norm function

$$N: \mathbb{R} \longrightarrow \mathbb{N}_0, \ a + b\sqrt{-13} \longmapsto a^2 + 13b^2.$$

You may use without proof that N is multiplicative.

- a) Determine the group of units of R.
- b) Show that $1 + \sqrt{-13}$ is irreducible.
- c) Is R a UFD? Justify your answer.

- (6) Show that a principal ideal in $\mathbb{Z}[x]$ is not maximal. [Hint: Start with an ideal (f) and consider the cases $\deg f \leq 0$ and $\deg f \geq 1$ separately.]
- (7) An element a in a commutative ring R is called a square if $a = b^2$ for some $b \in R$. Note that 0 is a square.
 - a) Let q be an odd prime power and \mathbb{F}_q be a field with q elements. Show that the number of squares in \mathbb{F}_q is (q+1)/2.

[Hint: Count the nonzero squares.]

- b) Determine the number of squares in the ring $\mathbb{Z}/460\mathbb{Z}$.
- (8) Let p be a prime number and F be a field with char $(F) \neq p$. Suppose F contains a primitive p-th root of unity, denoted by ζ . Let $a \in F$ and $f = x^p a$. Let E be a splitting field of f and θ be a root of f in E.
 - a) Show that all irreducible factors of f have the same degree. [Hint: Any such factor is, up to a scalar, the minimal polynomial of some root of f.]
 - b) Conclude that f is either irreducible or the element a is contained in $F^p := \{c^p \mid c \in F\}$.
- (9) Let $\zeta = e^{\frac{2\pi i}{12}} = \frac{1}{2}(\sqrt{3} + i)$ and consider $E = \mathbb{Q}(\zeta)$.
 - a) Show that $\sqrt{3} \in E$.
 - b) Present the Galois group of $E \mid \mathbb{Q}$ by describing each automorphism via its action on ζ .
 - c) Give the subgroup lattice of $Gal(E \mid \mathbb{Q})$.
 - d) Give all subfields of E and present them in the form $\mathbb{Q}(\alpha)$ for some α .