## Algebra Prelim, June 2, 2023

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even if you did not successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.
- All problems carry the same weight, but the individual parts of a problem may have different weights.


## Good luck!

(1) Let $V$ be an $n$-dimensional vector space over a field $F$ and let $\phi: V \longrightarrow V$ be a linear map. Recall that the rank of $\phi$, denoted by $\mathrm{rk} \phi$, is defined as the dimension of the image of $\phi$. Suppose $\phi^{2}=0$. Show that $\mathrm{rk} \phi \leq n / 2$.
(2) Let $A \in \mathbb{C}^{n \times n}$ be a unitary matrix, that is, $A A^{*}=I_{n}$, where $A^{*}=\bar{A}^{\top}$, that is, the complex conjugate transpose of $A$, and where $I_{n}$ is the identity matrix in $\mathbb{C}^{n \times n}$.
a) Show that every eigenvalue of $A$ has absolute value 1 .
b) Show that if $n$ is odd and all entries of $A$ are in $\mathbb{R}$, then 1 or -1 is an eigenvalue of $A$.
(3) Let $G$ be a finite group and $K$ a normal subgroup of $G$. Furthermore, let $P$ be a Sylow $p$-subgroup of $K$. Show the following.
a) For all $g \in G$, the group $g P g^{-1}$ is conjugate to $P$ in $K$.
b) $G=K N_{G}(P)$, where $N_{G}(P)$ is the normalizer of $P$ in $G$.
(4) Let $\sigma=\left(\begin{array}{lll}1 & \ldots & n\end{array}\right) \in S_{n}$. Show that the centralizer of $\sigma$ is the subgroup $\langle\sigma\rangle$.
(5) Consider the ring $R=\mathbb{Z}[\sqrt{-13}]=\{a+b \sqrt{-13} \mid a, b \in \mathbb{Z}\}$ and the norm function

$$
N: \mathbb{R} \longrightarrow \mathbb{N}_{0}, a+b \sqrt{-13} \longmapsto a^{2}+13 b^{2}
$$

You may use without proof that $N$ is multiplicative.
a) Determine the group of units of $R$.
b) Show that $1+\sqrt{-13}$ is irreducible.
c) Is $R$ a UFD? Justify your answer.
(6) Show that a principal ideal in $\mathbb{Z}[x]$ is not maximal.
[Hint: Start with an ideal $(f)$ and consider the cases $\operatorname{deg} f \leq 0$ and $\operatorname{deg} f \geq 1$ separately.]
(7) An element $a$ in a commutative ring $R$ is called a square if $a=b^{2}$ for some $b \in R$. Note that 0 is a square.
a) Let $q$ be an odd prime power and $\mathbb{F}_{q}$ be a field with $q$ elements. Show that the number of squares in $\mathbb{F}_{q}$ is $(q+1) / 2$.
[Hint: Count the nonzero squares.]
b) Determine the number of squares in the ring $\mathbb{Z} / 460 \mathbb{Z}$.
(8) Let $p$ be a prime number and $F$ be a field with $\operatorname{char}(F) \neq p$. Suppose $F$ contains a primitive $p$-th root of unity, denoted by $\zeta$. Let $a \in F$ and $f=x^{p}-a$. Let $E$ be a splitting field of $f$ and $\theta$ be a root of $f$ in $E$.
a) Show that all irreducible factors of $f$ have the same degree.
[Hint: Any such factor is, up to a scalar, the minimal polynomial of some root of $f$.]
b) Conclude that $f$ is either irreducible or the element $a$ is contained in $F^{p}:=\left\{c^{p} \mid c \in F\right\}$.
(9) Let $\zeta=e^{\frac{2 \pi i}{12}}=\frac{1}{2}(\sqrt{3}+i)$ and consider $E=\mathbb{Q}(\zeta)$.
a) Show that $\sqrt{3} \in E$.
b) Present the Galois group of $E \mid \mathbb{Q}$ by describing each automorphism via its action on $\zeta$.
c) Give the subgroup lattice of $\operatorname{Gal}(E \mid \mathbb{Q})$.
d) Give all subfields of $E$ and present them in the form $\mathbb{Q}(\alpha)$ for some $\alpha$.

