Preliminary Examination in Analysis

January 2, 2013

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real Analysis.
- You are to work a total of five problems (four mandatory problems and one optional problem).
 - Please indicate clearly on your test paper which optional problem is to be graded.
 - Indicate clearly what theorems and definitions you are using.

ADVANCED CALCULUS MANDATORY PROBLEMS

1. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers and suppose that

$$\limsup_{n\to\infty} \big|\frac{a_{n+1}}{a_n}\big|<1.$$

Show that the series $\sum_{n=0}^{\infty} a_n$ converges to a finite value.

2. Let (X, d) be a metric space and let E be a subset of X. Define

$$\rho_E(x) = \inf \left\{ d(x,y) : y \in E \right\}.$$

- (a) Show that $\rho_E(x) = 0$ if and only if x belongs to \bar{E} , the closure of E
- (b) Show that ρ_E is uniformly continuous by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y)$$

(be sure to explain why this inequality implies uniform continuity).

OPTIONAL PROBLEMS

- 3. Let f be the function which is defined by f(p/q) = 1/q if p and q are non-zero integers with no common factor and f(x) = 0 if x is irrational or x = 0.
 Is f Riemann integrable on [0,1]?
- 4. This problem concerns real-valued continuous functions.
 - (a) State the Weierstrass Approximation Theorem.
 - (b) Suppose that f is a real-valued continuous function on [0,1] with the property that $\int_0^1 x^n f(x) dx = 0$ for all $n = 0, 1, 2, \ldots$ Prove that f is the zero function. You may assume the following theorem: If g is continuous and nonnegative on [a,b] and $\int_a^b g(x) dx = 0$, then g is the zero function.

REAL ANALYSIS MANDATORY PROBLEMS

If E is a Lebesgue measurable set, we let m(E) denote the Lebesgue measure of E.

- 1. (a) Give the definition of the exterior measure $m_*(E)$ for $E \subset \mathbf{R}$.
 - (b) Show that the exterior measure is countably sub-additive.
- 2. Do we have

$$\sum_{n=0}^{\infty} \int_{\mathbf{R}} \frac{x^n}{n!} \exp(-x^2) \, dx = \int_{\mathbf{R}} \exp(-x^2 + x) \, dx?$$

OPTIONAL PROBLEMS

- 3. Can you find a Lebesgue measurable set $E \subset \mathbb{R}$ so that for each interval I, $m(E \cap I) = \frac{1}{2}m(I)$?
- 4. We say that $E \subset \mathbb{R}$ is of content 0 if for each $\epsilon > 0$, we may find a covering of E by a finite collection of closed intervals $\{[a_j, b_j] : j = 1, \ldots, N\}$ so that $E \subset \bigcup_{j=1}^N [a_j, b_j]$ and $\sum_{j=1}^N b_j a_j < \epsilon$.
 - (a) If a set is of content zero, must it be of measure zero?
 - (b) If a set is of measure zero, must it be of content zero?

Complex Analysis Mandatory Problems

1. Show that there is no function f analytic in the open unit disk $\{z:|z|<1\}$ such that

 $f(1/n) = \frac{(-1)^n}{n^2}$, for n = 2, 3, 4, ...

2. Suppose Ω is a bounded plane domain and that

$$f: \bar{\Omega} \to \mathbf{C}$$

is a non-constant function analytic in Ω and continuous in $\bar{\Omega}$ such that |f(z)| = 1 for all $z \in \partial \Omega$. Prove that $f(z_0) = 0$ for some $z_0 \in \Omega$.

OPTIONAL PROBLEMS

3. Let f be an entire function with the property that

$$|f(z)| \ge |z|^N$$
, when $|z| > M$

for some positive integer N and some M > 0. Prove that f is a polynomial.

4. Given a real number a > 1, show that

$$\int_0^{2\pi} \frac{d\theta}{a + \cos\theta} \, d\theta = \frac{2\pi}{\sqrt{a^2 - 1}}.$$