Preliminary Examination in Analysis

January 2014

Instructions

• This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.

You should work problems from the section on advanced calculus and from the

section of the option you have chosen.

- You are to work a total of five problems (four mandatory problems and one optional problem).
 - You must work two mandatory problems from each part.
 - Please indicate clearly on your test paper which optional problem is to be graded.
 - Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Let f be differentiable at a and let $\{x_n\}$, $\{z_n\}$ be two sequences converging to a such that $x_n < a < z_n$ for all $n \in \mathbb{N}$. Prove that

$$\lim_{n\to\infty}\frac{f(x_n)-f(z_n)}{x_n-z_n}=f'(a).$$

2. Assume that f_n , $n \in \mathbb{N}$, are monotone on [a, b]. Show that if $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely at x = a and x = b, then the series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely and uniformly on the whole interval [a, b].

Advanced Calculus, Optional Problems

3. Suppose that $f, g \in C([a, b])$. Show that there is $\theta \in (a, b)$ such that

$$g(\theta) \int_a^b f(x) dx = f(\theta) \int_a^b g(x) dx.$$

4. Let $\{f_n\}$ be a sequence of nonnegative continuous functions on the interval I = [-1, 1] and suppose $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for each $x \in I$. Prove or disprove the assertion that if f is continuous on I, then the series for f converges uniformly on I.

Real Analysis, Mandatory Problems

- 1. Let E be a subset of \mathbb{R}^d .
 - (a) State the definition of Lebesgue exterior measure $m_*(E)$.
 - (b) Prove that the exterior measure is translation invariant; that is, if

$$E_h = \{x + h : x \in E\},\,$$

where $h \in \mathbb{R}^d$, then $m_*(E_h) = m_*(E)$.

2. Let $f(x,y): 0 \le x,y \le 1$ satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $\frac{\partial f}{\partial x}(x,y)$ is a bounded function of (x,y). Show that $\frac{\partial f}{\partial x}(x,y)$ is a measurable function of y for each x, and

$$\frac{d}{dx}\int_0^1 f(x,y)\,dy = \int_0^1 \frac{\partial f}{\partial x}(x,y)\,dy.$$

Real Analysis, Optional Problems

3. Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on E. If $f_k \to f$ and $f_k \le f$ a.e. on E, show that

$$\int_E f_k \to \int_E f.$$

4. Let $F \subset \mathbb{R}$ be a closed set such that $m(F^c) < \infty$ and

$$I(x) = \int_{\mathbb{R}} \frac{\delta(y)}{|x - y|^2} \, dy,$$

where $\delta(y) = d(y, F) = \inf\{|y - z| : z \in F\}$. Show that $I(x) < \infty$ for a.e. $x \in F$.