Preliminary Examination in Analysis

January 2017

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
 - You must work two mandatory problems from each part.
 - Please indicate clearly on your test paper which optional problem is to be graded.
 - Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

- 1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f' is continuous. Show that the restriction of f to any closed interval [a, b] is Lipschitz continuous.
- 2. Suppose that (X, d) is a metric space, fix a point a, and let f(x) = d(a, x). Show that the function $f: X \to \mathbb{R}$ is uniformly continuous.

Advanced Calculus, Optional Problems

- 3. Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose that f'(c)=0 for some $c\in(a,b)$. Show that if f has a local minimum at x=c and f''(c) exists, then $f''(c)\geq 0$.
- 4. Suppose that $f \in C[0,1]$ and

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for all integer } n \ge 0.$$

Show that f is the zero function.

Real Analysis, Mandatory Problems

1. For $f \in L^1(\mathbb{R})$, the Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\xi} dx.$$

- (1) Show that \widehat{f} is continuous in \mathbb{R} .
- (2) Show that $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$. For this part, you may assume that the set of all linear combinations of characteristic functions over bounded open intervals is dense in $L^1(\mathbb{R})$.
- 2. Let f be an integrable function in \mathbb{R}^d . Show that

$$\lim_{\alpha \to \infty} \alpha \, m \big\{ x \in \mathbb{R}^d : |f(x)| > \alpha \big\} = 0.$$

Real Analysis, Optional Problems

3.

- (1) State Egorov's Theorem.
- (2) Use Egorov's Theorem to prove the Bounded Convergence Theorem: if $\{f_k\}$ is a sequence of measurable functions on a measurable set E with $m(E) < \infty$, such that $f_k \to f$ a.e. in E and $|f_k| \leq M$ a.e. in E for some finite constant M, then

$$\int_{E} |f_k - f| \, dx \to 0 \quad \text{as } k \to \infty.$$

4. For a measurable function f on a measurable set $E \subset \mathbb{R}$, define

$$||f||_{L^{\infty}(E)} = \inf \Big\{ \alpha : m\{x \in E : |f(x)| > \alpha \} = 0 \Big\}.$$

Show that if $||f||_{L^{\infty}(E)} < \infty$ and $0 < m(E) < \infty$, then

$$\lim_{p \to \infty} \left(\frac{1}{m(E)} \int_E |f|^p \, dx \right)^{1/p} = ||f||_{L^{\infty}(E)}.$$

Complex Analysis, Mandatory Problems

1. Use the residue theorem to verify that

$$\int_0^\infty \frac{dx}{1+x^n} = \frac{\pi}{n\sin(\pi/n)},$$

whenever $n = 2, 3, 4, \ldots$

2. Let f be a non-constant entire function. Show that the range of f is dense in \mathbb{C} .

Complex Analysis, Optional Problems

3. Suppose that f has a power series expansion about 0 which converges in all of \mathbb{C} , and that

$$\iint_{\mathbb{C}} |f(x+iy)| \, dx dy < \infty.$$

Prove that $f \equiv 0$.

4. Suppose that f is analytic in |z| < 1 and continuous on $|z| \le 1$. Prove that if $f \equiv 0$ on some bounded arc I, no matter how small the arc, then $f \equiv 0$ on the entire disk $|z| \le 1$.