Preliminary Examination in Analysis

January 2024

Instructions

• This is a three-hour examination on Advanced Calculus and Real Analysis.

• You are to work a total of five problems (four mandatory problems, two from each section, and one optional problem).

- You must work the two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.

1

• Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Suppose $\{a_n\}$ and $\{b_n\}$ are two complex sequences such that

$$\lim_{n \to \infty} a_n b_n = 0$$

Show that at least one of $\{a_n\}$ and $\{b_n\}$ has a subsequence that converges to zero.

2. Suppose $f : [a, b] \to \mathbb{R}$ is bounded, and moreover f is Riemann integrable on [a, c] for all a < c < b. Show that f is Riemann integrable on [a, b].

Advanced Calculus, Optional Problems

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and $\lim_{x \to \infty} f'(x) = 0$. Show that if the sequence $\{f(n)\}_{n \in \mathbb{N}}$ converges, then the limit $\lim_{x \to \infty} f(x)$ exists.

4. A function $f : \mathbb{R} \to \mathbb{R}$ is called Lipschitz if there exists M > 0 such that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x, y \in \mathbb{R}$. Show that every Lipschitz function on \mathbb{R} is uniformly continuous on \mathbb{R} , but not every uniformly continuous function on \mathbb{R} is necessarily Lipschitz on \mathbb{R} .

Real Analysis, Mandatory Problems

For a measurable subset E of \mathbb{R}^d , we use m(E) to denote the Lebesgue measure of E.

1. Let f = f(x, y) be a real-valued, continuous function on

$$S = \{(x, y) : 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$$

and

$$F(x) = \int_0^1 f(x, y) \, dy.$$

Show that if $g(x,y) = \frac{\partial f}{\partial x}(x,y)$ is continuous on S, then F(x) is differentiable on (0,1) and

$$F'(x) = \int_0^1 g(x, y) \, dy.$$

2. Let E be a subset of \mathbb{R} with measure zero. Show that the set

$$\{x^2 : x \in E\}$$

also has measure zero.

Real Analysis, Optional Problems

3. (a). State Fatou's Lemma.

- (b). State the Monotone Convergence Theorem.
- (c). Use Fatou's Lemma to prove the Monotone Convergence Theorem.
- 4. Let f be an integrable function on \mathbb{R}^d and

$$E_n = \{x \in \mathbb{R}^d : |f(x)| > n\}.$$

Show that

$$\lim_{n \to \infty} n \cdot m(E_n) = 0.$$