ANALYSIS PRELIMINARY EXAM June 3, 2015

Instructions

- This is a three hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
- Please indicate clearly on your test paper which optional problem is to be graded.
- Indicate clearly what theorems and definitions you are using.

In what follows \mathbb{R}^n denotes Euclidean n space, while \mathbb{R} , \mathbb{C} denote the real and complex numbers.

ADVANCED CALCULUS MANDATORY PROBLEMS

1. Given two nonempty sets in \mathbb{R}^n , the distance between C and D is defined by

$$d(C, D) = \inf\{|x - y| : x \in C, y \in D\}.$$

- (a) If $a \in \mathbb{R}^n$ and D is closed, prove that there exists a $d \in D$ such that $d(\{a\}, D) = |a d|$.
- (b) If C is compact and D is closed, prove that there exist $c \in C$ and $d \in D$ such that d(C, D) = |c d|.
- 2. Let $f:[0,1]\to\mathbb{R}$ be defined by $\begin{cases} f(x)=0, \text{ for irrational } x\\ f(x)=1/n \text{ for rational } x=m/n \end{cases}$ where m,n are nonnegative integers with no common factors. Prove that f is Riemann integrable on [0,1] and find the value of $\int_0^1 f(x)dx$.

OPTIONAL PROBLEMS

- 3. Let $f:[0,1] \to \mathbb{R}$ be continuous. Prove that for each $\varepsilon > 0$, there is an M > 0 such that $|f(x) f(y)| \le M |x y| + \varepsilon$ for all $x, y \in [0,1]$.
- 4. Let $f:[a,b]\to\mathbb{R}$ be a continuous function that satisfies

$$\int_a^b x^n f(x) dx = 0 \qquad \text{for each nonnegative integer } n.$$

Prove that f(x) = 0 for each $x \in [a, b]$.

REAL ANALYSIS MANDATORY PROBLEMS

1. Let $\{E_n\}_{n=1}^{\infty}$ be a countable family of measurable subsets of \mathbb{R}^2 and let

 $E = \{x \in \mathbb{R}^2 : x \in E_n \text{ for infinitely many positive integers } n\}.$

- (a) Show that E is measurable.
- (b) Show that if the series $\sum_{n=1}^{\infty} m(E_n)$ converges then m(E) = 0. Here m denotes Lebesgue measure.
- 2. Let $E = \mathbb{R}^2$ and suppose f is integrable on E.
 - (a) Show that f(x) is finite for almost every x in E,
 - (b) Apply a convergence theorem to show that for every $\epsilon > 0$ there exists a bounded integrable function g on E with compact support and satisfying

$$\left| \int_E f - \int_E g \right| < \epsilon.$$

OPTIONAL PROBLEMS

- 3. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions on a measurable set E in \mathbb{R}^2 such that f_1 is integrable on E and $\sum_{n=1}^{\infty} \int_E |f_{n+1} f_n| < \infty$. Show $\{f_n\}$ converges almost everywhere to an integrable function f on E and $\lim_{n \to \infty} \int_E f_n = \int_E f$.
- 4. Show that if f is a real-valued function that is both absolutely continuous and strictly increasing on an interval [a, b], then

$$\int_{U} f' = m(f(U))$$

for any open subset U of [a, b].

COMPLEX ANALYSIS MANDATORY PROBLEMS

1. Use Cauchy's theorem for derivatives or the residue theorem to verify for n a positive integer that

$$\int_0^{\pi} \sin^{2n} \theta \ d\theta \ = \ \pi \frac{(2n)!}{2^{2n} (n!)^2} \ .$$

2. Prove that if f is a univalent mapping of $B(0,1) = \{z : |z| < 1\}$ onto B(0,1) then f is a Möbius or linear fractional transformation.

OPTIONAL PROBLEMS

- 3. Find the univalent function f which maps $B(0,1)=\{z:|z|<1\}$ onto $\mathbb{C}\setminus(-\infty,-1/4]$ and satisfies f(0)=0,f'(0)=1.
- 4. Given $P(z) = z^7 + z^4 + 5z^3 + z + 1$ for $z \in \mathbb{C}$.
 - (a) Determine how many zeros P has (counted according to multiplicity) in $B(0,1)=\{z:|z|<1\}.$
 - (b) Determine how many zeros P has (counted according to multiplicity) in $B(0,2)=\{z:|z|<2\}.$