Preliminary Examination in Analysis

June 2016

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
 - You must work two mandatory problems from each part.
 - Please indicate clearly on your test paper which optional problem is to be graded.
 - Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Suppose that $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space (X, d). Show that the sequence $\{d(p_n, q_n)\}$ converges. Note that X is not assumed to be complete.

2. Let X be a metric space, and let $\{f_n\}$ be a sequence of real-valued functions on X.

- (a) Say what it means for the sequence $\{f_n\}$ to converge uniformly to a function f on X.
- (b) Suppose that $\{f_n\}$ converges uniformly to f on X. Let $p \in X$. Using the definition from part (a), prove that, if each f_n is continuous at p, then f is also continuous at p.

Advanced Calculus, Optional Problems

3.

- (a) Say what it means for a function $f:I\to\mathbb{R}$ defined on an interval $I\subset\mathbb{R}$ to be uniformly continuous.
- (b) Suppose that f is a real-valued continuous function on \mathbb{R} and that

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

Prove that f is uniformly continuous.

4.

- (a) State the Weierstrass approximation theorem for continuous functions on [0,1].
- (b) Suppose that $f:[0,1]\to\mathbb{R}$ is continuous and that $\int_0^1 x^n f(x)\,dx=0$ for all $n=0,1,2,\cdots$. Prove that f is the zero function. You may assume the following theorem: if g is continuous and nonnegative on [0,1] and $\int_0^1 g(x)\,dx=0$ (Riemann integral), then g is the zero function.

Real Analysis, Mandatory Problems

1. Let f be a Lebesgue integrable function in \mathbb{R}^d . Suppose that

$$\int_{E} f \ge 0$$

for every Lebesgue measurable set E in \mathbb{R}^d . Show that $f \geq 0$ a.e. in \mathbb{R}^d .

2.

- (a) State Egorov's Theorem.
- (b) State the Bounded Convergence Theorem.
- (c) Use Egorov's Theorem to prove the Bounded Convergence Theorem.

Real Analysis, Optional Problems

3. Let f be uniformly continuous on $\mathbb R$. Suppose that f is Lebesgue integrable on $\mathbb R$. Show that

$$\lim_{|x| \to \infty} f(x) = 0.$$

4. A map $T: \mathbb{R}^d \to \mathbb{R}^d$ is called Lipschitz if there exists M > 0 such that

$$|T(x) - T(y)| \le M|x - y|$$
 for any $x, y \in \mathbb{R}^d$.

Show that if E is a subset of \mathbb{R}^d with m(E) = 0 and $T : \mathbb{R}^d \to \mathbb{R}^d$ is a Lipschitz map, then T(E) is Lebesgue measurable and m(T(E)) = 0.

Complex Analysis, Mandatory Problems

- 1. Let $|\alpha| < 1$ and set $f(z) = \frac{z \alpha}{1 \bar{\alpha}z}$. Show that
 - (a) |f(z)| = 1 on |z| = 1,
 - (b) f is analytic in |z| < 1,
 - (c) f maps the closed unit disk in a one-to-one fashion, onto itself.
- 2. Use the residue theorem to verify that

$$\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx = \frac{\pi}{2}.$$

Your solution should define the curve of integration you use and should verify any assertion you make about an integral approaching 0.

Complex Analysis, Optional Problems

- 3. Let f be a function analytic in |z| < 1, continuous on $|z| \le 1$, with the property that |f(z)| = 1 for all z on the boundary |z| = 1.
- (a) Suppose that f has no zeros in the interior |z| < 1. Prove that f is identically constant. Hint: Apply the maximum principle to both f and 1/f.
- (b) Prove that, in general, f is a rational function. *Hint*: Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the zeros of f in |z| < 1, counting multiplicity, and consider the function

$$f(z) \prod_{j=1}^{n} \left(\frac{z - \alpha_j}{1 - \bar{\alpha}_j z} \right)^{-1}$$

(see Problem 1).

4. Suppose that a function f is defined and analytic in the entire complex plane \mathbb{C} , and that for each point $z_0 \in \mathbb{C}$ at least one coefficient c_n in the expansion

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

is equal to 0. Prove that f is a polynomial.

Hint: For each k = 1, 2, 3... consider the set $E_k = \{z \in \mathbb{C} : f^{(k)}(z) = 0\}$, and argue that for some k the set E_k is uncountable, etc.