# Preliminary Examination in Numerical Analysis

Jan. 4, 2006

### Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of two parts:
  Part I: Matrix Theory and Numerical Linear Algebra
  Part II: Introductory Numerical Analysis
- 3. There are three problem sets in each part. Work two out of the three problem sets for each part.
- 4. All problem sets carry equal weights.

Problem J. Transmire Problem

2 17 m

1. Telephology file entitlemental beneates for a profes-

# PART I - Matrix Theory and Numerical Linear Algebra (Work two of the three problem sets in this part)

Problem 1. Let f(x) denote computational result of an expression x in a floating point arithmetic and let  $\epsilon$  be the machine roundoff unit.

1. Show that

$$f(\sum_{i=1}^n x_i y_i) = \sum_{i=1}^n x_i y_i (1 + \delta_i)$$

with  $\delta_i \leq n\epsilon + \mathcal{O}(\epsilon^2)$ .

2. Let  $A, B \in \mathbb{R}^{n \times n}$ . Show that

$$\operatorname{fl}(AB) = AB + E, \quad |E| \le n\epsilon |A| |B| + \mathcal{O}(\epsilon^2).$$

3. Let  $L = [l_{ij}]$  be an  $n \times n$  lower triangular matrix with the diagonals equal to 1. For any  $b \in \mathbb{R}^n$ , consider solving Lx = b by the forward substitution

$$x_i = b_i - \sum_{j=1}^{i-1} l_{ij} x_j, \quad i = 1, \dots, n.$$

Prove that the computed solution  $\hat{x}$  satisfies  $(L + \delta L)\hat{x} = b$  with  $|\delta L| \leq (n-1)\epsilon |L| + \mathcal{O}(\epsilon^2)$ .

Problem 2.

1. Let  $\hat{x}$  be an approximate solution to Ax = b and  $r = A\hat{x} - b$ . Construct a matrix  $\delta A$  such that  $(A + \delta A)\hat{x} = b$  and

$$\frac{\|\delta A\|_2}{\|A\|_2} = \frac{\|r\|_2}{\|A\|_2 \|\hat{x}\|_2}.$$

2. Let A = LU be the LU-factorization of A with  $|l_{ij}| \leq 1$ . Let  $a_i^T$  and  $u_i^T$  denote the i-th row of A and U respectively. Show that

$$u_i^T = a_i^T - \Sigma_{j=1}^{i-1} l_{ij} u_j^T.$$

and

$$\|U\|_{\infty} \leq 2^{n-1} \|A\|_{\infty}$$

3. Let  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$   $(m \ge n)$ . Outline the algorithm to compute the QR factorization of A using the Householder transformations and the method to solve  $\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$  by the QR factorization.

Problem 3. Eigenvalue Problem.

1. Consider the orthogonal iteration for  $A \in \mathbb{R}^{n \times n}$ :

Algorithm:

$$\begin{array}{c} V_0 = I; \\ \text{For } i = 0, 1, 2, \cdots, m \\ Y_i = AV_i \\ \text{Factorize } Y_i = V_{i+1} \hat{R}_{i+1} \; (QR\text{-factorization}) \end{array}$$

Prove that  $A^i = V_i \hat{R}_i \hat{R}_{i-1} \cdots \hat{R}_1$ . Describe the convergence property of the columns of  $V_i$  (make necessary assumptions).

2. Consider the QR algorithm:

$$A_0 = A$$

For 
$$i = 0, 1, 2, \dots, m$$

Factorize 
$$A_i = Q_i R_i$$
 (QR-factorization)

$$A_{i+1} = R_i Q_i$$

End

Prove that  $A_{i+1} = Q_i^T A_i Q_i$ .

3. Prove that the two algorithms are equivalent in the sense that  $A_i = V_i^T A V_i$ .

## Part II – Numerical Analysis (Work two of the three problem sets in this part)

### Problem 4.

1. Denote the intervals that arise in the bisection method by  $[a_0, b_0], [a_1, b_1], \ldots, [a_n, b_n]$ . Let the midpoint of each interval be  $c_n = (a_n + b_n)/2$ ,  $r = \lim_{n \to \infty} c_n$ , and  $e_n = r - c_n$ . For the following (a) and (b), if the statement is true prove it, and if the statement is false show a simple counter example.

(a) 
$$|r-a_n| \leq 2^{-n-1}(b_o-a_o)$$

- (b)  $0 \le r a_n \le 2^{-n}(b_o a_o)$
- (c). Suppose that the bisection method is started with the interval [0.1, 1.0]. How many steps should be taken to computer a root with relative accuracy of  $\frac{1}{2} \times 10^{-8}$ ?
- 2. Determine the formula for Newton's method for finding a root of the function f(x) = x e/x. Prove the order of convergence for this Newton's method.

#### Problem 5.

- 1. (a) Find the Chebyshev polynomial interpolation p(x) that approximates the function  $f(x) = \frac{1}{1+x^2}$  over [-1,1] with n=2.
  - (b) What is the error bound for |f(x) p(x)|?
  - (c) What is the error bound if one use any three points to interpolate f(x)?
- 2. Establish a formula of the form

$$f''(x) \sim \frac{1}{h^2} [Af_{n+2} + Bf_{n+1} + Cf_n + Df_{n-1}]$$

where  $f_{n+1} = f(x_n + h)$ . What is the order of error for this approximation?

### Problem 6.

- 1. Find an equation of the form  $y = ae^x + bx$  that best fits the points (-1,0), (0,1) and (1,2) in the least-squares sense.
- 2. Discuss the convergence of the following method for solving x' = f(t, x) with  $x(0) = x_0$ ,

$$x(t+h) = x(t) + \frac{1}{2}(K_1 + K_2)$$

where

$$K_1 = hf(t,x)$$
  
 $K_2 = hf(t+h,x+K_1)$