Preliminary Examination in Numerical Analysis

Jan. 8, 2016

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of ten equally-weighted problems. The first five cover Matrix Theory and Numerical Linear Algebra and the last five cover Introductory Numerical Analysis
- 3. You may omit one problem (i.e. work nine out of the ten problems).

Problem 1. Show that if A is an $n \times n$ matrix of real numbers and if b is an $n \times 1$ column vector, then

$$\left\| A \left(I - \frac{bb^T}{b^T b} \right) \right\|_F^2 = \|A\|_F^2 - \frac{b^T A^T A b}{b^T b}.$$

Problem 2. Assume that A and $A + \delta A$ are invertible and $||A^{-1}|| ||\delta A|| < 1/2$. Prove

$$\frac{\|(A - \delta A)^{-1} - A^{-1} (A + \delta A) A^{-1}\|}{\|A^{-1}\|} \le 2\|A^{-1}\|^2 \|\delta A\|^2.$$

where $\|\cdot\|$ is a matrix operator norm.

Problem 3. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ $(m \ge n)$. Consider the least squares problem

$$\min_{x \in R^n} \|Ax - b\|_2. \tag{1}$$

Use the SVD of A to prove that $x = A^{\dagger}b$ is the solution to (1) with the minimal norm. Describe advantages and disadvantages of the SVD based method for solving (1).

Problem 4. Let μ be an approximate eigenvalue of an $n \times n$ matrix A and x be an approximate eigenvector with $||x||_2 = 1$. Let $r = Ax - \mu x$. Show that there is an $n \times n$ matrix E with $||E||_2 = ||r||_2$ such that A + E has eigenvalue μ with a corresponding eigenvector x.

Problem 5. Write down the (single) shifted QR algorithm for a matrix A. Prove that the matrices produced are all similar to the original matrix. Explain how and why the shifting may accelerate convergence.

Problem 6. Let w be a continuous positive function on the open interval (a, b) and let N be a positive integer. Suppose p_0, \ldots, p_N are real polynomials of a single variable such that p_i has degree i and $(p_i, p_j) = \delta_{i,j}$ whenever $0 \le i, j \le N$. Here

$$(p,q) = \int_a^b p(x)q(x)w(x) dx$$

for real polynomials p and q of a single variable and $\delta_{i,j} = 1$ when i = j and $\delta_{i,j} = 0$ otherwise. Show that there exist constants A_i , B_i and C_i such that

$$p_{i+1}(x) = (A_i x + B_i)p_i(x) - C_i p_{i-1}(x)$$

for all *i* satisfying $0 \le i < N$, where we take $p_{-1} = 0$. (Hint: Choose A_i so that $p_{i+1}(x) - A_i x p_i(x)$ is a polynomial of degree at most n and write this polynomial as a linear combination of $\{p_i : i \le n\}$.)

Problem 7. Suppose that p interpolates $f \in C^{n+2}[a,b]$ at $a \le x_0 < \ldots < x_n \le b$. Show that there exists $\xi_i \in (a,b)$ such that

$$p'(x_i) - f'(x_i) = rac{f^{(n+1)}(\xi_i)}{(n+1)!} \prod_{\substack{0 \le j \le n \ i \ne i}} (x_i - x_j).$$

Problem 8. Suppose that a function $f \in C^1[a,b]$ has a simple root at $c \in (a,b)$. Consider perturbing the function to $f + \varepsilon g$ where $g \in C^1[a,b]$. Show that as $\varepsilon \to 0$ the condition number of the root at c is 1/|c||f'(c)|.

Problem 9. Suppose you have a quadrature rule of the form $I_n(f) = \sum_{i=1}^n w_i f(x_i)$ that integrates polynomials up to degree n on the interval [a, b] exactly. Show that for $f \in C^{m+1}[a, b]$ the error in the rule can be written in the form

$$I(f) - I_n(f) = \frac{1}{n!} \int_a^b f^{(n+1)}(t) K(t) dt,$$

where $K(t) = I((x-t)_+^n) - I_n((x-t)_+^n)$ depends only on the quadrature rule and is independent of f. The function $(x-t)_+$ is zero for $x \le t$ and equal to x-t for x > t. What must be true of K(t) if the quadrature rule integrates polynomials of degree n+1 exactly. (Hint: Use the integral form of the remainder in Taylor's theorem.)

Problem 10. Let $f: \mathbb{R} \to \mathbb{R}$ have a continuous derivative and suppose f has a fixed point $p \in \mathbb{R}$ with |f'(p)| < 1. Show that there is a $\delta > 0$ such that if $|x_0 - p| < \delta$ and if $\{x_n\}_{n=0}^{\infty}$ is the sequence of iterates with $x_{n+1} = g(x_n)$ for $n \geq 0$, then $\{x_n\}_{n=0}^{\infty}$ converges to p.