Preliminary Examination in Numerical Analysis

January 10, 2017

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of ten equally-weighted problems. The first five cover Matrix Theory and Numerical Linear Algebra and the last five cover Introductory Numerical Analysis
- 3. You may omit one problem (i.e. work nine out of the ten problems).

Problem 1. Let A and Q be two $n \times n$ real matrices and assume that Q is orthogonal. Prove that

ff
$$(AQ) = (A + E)Q$$
, $||E||_2 \le n^3 \epsilon ||A||_2 + \mathcal{O}(\epsilon^2)$.

(You may use without proof that $\operatorname{fl}\left(\sum_{i=1}^n x_i y_i\right) = \sum_{i=1}^n x_i y_i (1+\delta_i)$ with $|\delta_i| \leq n\epsilon + \mathcal{O}(\epsilon^2)$ and $\frac{1}{\sqrt{n}} \|A\|_1 \leq \|A\|_2 \leq \sqrt{n} \|A\|_1$.)

Problem 2. Let A be an invertible $n \times n$ matrix. Suppose \hat{x} is an approximate solution to Ax = b and let $r = b - A\hat{x}$. Show directly from the definitions that

$$\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \le \frac{\|x - \hat{x}\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|},$$

where $\kappa(A) = ||A|| ||A^{-1}||$.

Problem 3. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix.

- 1. Write down the Cholesky Algorithm for computing the Cholesky factorization $A = GG^T$
- 2. Prove that $|g_{ij}| \leq \sqrt{a_{ii}}$ for any $1 \leq j \leq i \leq n$, where $G = [g_{ij}]$.

Problem 4. Let $A \in \mathbb{R}^{m \times n}$ with $r = \operatorname{rank}(A) < n$ and $b \in \mathbb{R}^m$ $(m \ge n)$. Let $A = U \Sigma V^T$ be the SVD of A. Find the solution set to the least squares problem $\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$. For some $\alpha > \|A^{\dagger}b\|_2$, find a solution x with $\|x\|_2 = \alpha$.

Problem 5. Let x be a unit eigenvector of $A \in \mathbb{C}^{n \times n}$ corresponding to λ . Let H be the Householder reflection such that $Hx = e_1$, where $e_1 = [1, 0, \dots, 0]^T$. Prove that

$$HAH^* = \left(\begin{array}{cc} \lambda & T_{12} \\ 0 & T_{22} \end{array}\right)$$

where $T_{12} \in \mathbb{C}^{1 \times (n-1)}$ and $T_{22} \in \mathbb{C}^{(n-1) \times (n-1)}$.

Problem 6. Suppose $g \in C^1[a, b]$, and there exists a $\lambda \in (0, 1)$ such that

$$|g(x)-g(y)|<\lambda|x-y|\quad\text{for}\quad x,y\in(a,b).$$

Show that there exists a unique $x_* \in [a, b]$ such that $x_* = g(x_*)$, and that the iteration $x_{i+1} = g(x_i)$ for any $x_0 \in (a, b)$ converges to x_* with rate of at most λ .

Problem 7. Let x_0, \ldots, x_n be distinct numbers and let a_0, \ldots, a_n and b_0, \ldots, b_n be given numbers. It is known that there exists a polynomial of degree at most 2n + 1 such that $p(x_i) = a_i$ and $p'(x_i) = b_i$ for all $i = 0, \ldots, n$. Show that p is unique.

Problem 8. Let w(t) be a continuous positive function on the interval (0,1) and let Π_n be vector space of all real polynomials of degree at most n, where $n \geq 1$. Define a norm on Π_n by

$$\|p\|=\sqrt{(p,p)}, ext{ where } (p,q)=\int_0^1 p(t)q(t)w(t)\,dt ext{ and } p,q\in\Pi_n.$$

Let p_n be an orthogonal polynomial of degree n so $(p, p_n) = 0$ for all $p \in \Pi_{n-1}$ and let k_n be the coefficient of t^n in $p_n(t)$. Find the best approximation in the norm to t^n by polynomials in Π_{n-1} .

Problem 9. The purpose of this problem is to solve (algebraically) for distinct numbers x_1 and x_2 and nonzero numbers c_1 and c_2 such that

$$\int_0^1 p(x) \, dx = c_1 p(x_1) + c_2 p(x_2) \tag{1}$$

for all polynomials p of degree at most 3.

a) Calculate $\alpha_k = \int_0^1 x^k dx$ for $k = 0, \dots, 3$. Solve for numbers y_0 and y_1 such that the system of equations below are satisfied.

$$\alpha_2 + y_0 \alpha_0 + y_1 \alpha_1 = 0,$$

$$\alpha_3 + y_0 \alpha_1 + y_1 \alpha_2 = 0$$

b) Let $q(x) = y_0 + y_1x + x^2$. Show that if (1) holds then

$$c_1 q(x_1) + c_2 q(x_2) = 0,$$

$$c_1x_1q(x_1) + c_2x_2q(x_2) = 0$$

- c) Show that $q(x_1) = q(x_2) = 0$.
- d) Find x_1, x_2, c_1, c_2 .

Problem 10. What is the order of the following two step method for approximating the solution to y' = f(x, y)

$$y_{n+1} = 5y_n - 4y_{n-1} - 3hf(x_n, y_n).$$

Is the method stable?