## Preliminary Examination in Numerical Analysis

Jan 2, 2019

## **Instructions:**

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

**Problem 1**. Let f(x) denote computational result of an expression x in a floating point arithmetic and let  $\epsilon$  be the machine roundoff unit.

(a) Show that

fl 
$$(\sum_{i=1}^{n} x_i y_i) = \sum_{i=1}^{n} x_i y_i (1 + \delta_i)$$

with  $\delta_i \leq n\epsilon + \mathcal{O}(\epsilon^2)$ .

(b) Let A and X be two  $n \times n$  matrices, and assume that X is nonsingular. Show that

$$f(AX) = (A + E)X, \quad ||E||_1 \le (n\epsilon + \mathcal{O}(\epsilon^2))\kappa_1(X)||A||_1,$$

where  $\kappa_1(X) = ||X||_1 ||X^{-1}||_1$ .

**Problem 2**. Let  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ . Consider the regularized least-squares problem

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 + \mu^2 ||x||_2^2 \tag{1}$$

- (a) Show that  $\hat{x} = (A^T A + \mu^2 I)^{-1} A^T b$  is the solution to (1).
- (b) Assume that A has full column rank. Show that  $\kappa_2(A^TA + \mu^2I) \leq \kappa_2(A^TA)$ , where  $\kappa_2(M) = \frac{\lambda_{\max}(M)}{\lambda_{\min}(M)}$  denotes the spectral condition number of a symmetric positive definite matrix M.

**Problem 3.** Let A be a symmetric  $n \times n$  matrix and  $\lambda_1$  its largest eigenvalue. Show that

$$\max_{x \neq 0} \frac{x^T A x}{x^T x} = \lambda_1 \tag{2}$$

and the maximum is attained at any eigenvector corresponding to  $\lambda_1$ .

**Problem 4.** Let A be an  $n \times n$  symmetric positive definite matrix.

- (a) Show that there is a symmetric positive definite matrix S such that  $A = S^2$ .
- (b) For any  $x, y \in \mathbb{R}^n$ , show that

$$(x^Ty)^2 \le (x^TAx)(y^TA^{-1}y)$$

**Problem 5.** Assume that f(x) is a smooth function and r is a root of multiplicity m, i.e.  $f(r) = f'(r) = \cdots = f^{(m-1)}(r) = 0 \neq f^{(m)}(r)$ . Prove that the modified Newton's method

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

converges at least quadratically if  $x_0$  is sufficiently close to r.

**Problem 6.** Let  $x_0$  and  $x_1$  be two distinct real numbers and let n and m be positive integers.

(a) Find all polynomials p of degree at most n+m such that

$$p(x_0) = p'(x_0) = \dots = p^{(n-1)}(x_0) = 0,$$
  
 $p(x_1) = p'(x_1) = \dots = p^{(m-1)}(x_1) = 0.$ 

(b) Let  $a_0, a_1, \ldots, a_{n-1}$  and  $b_0, b_1, \ldots, b_{m-1}$  be any real numbers. Show that there exists one and only one polynomial q of degree at most n+m-1 such that

$$q^{(k)}(x_0) = a_k$$
 for  $k = 0, 1, ..., n - 1,$   
 $q^{(k)}(x_1) = b_k$  for  $k = 0, 1, ..., m - 1.$ 

(Hint: use induction on m.)

**Problem 7**. Let f be a continuous function on [-1,1] that is not identically zero there and suppose

$$\int_{-1}^{1} f(x)p(x) \, dx = 0$$

for all polynomials p of degree at most n, where n is a fixed nonnegative integer. Show that f changes sign at least n+1 times on [-1,1].

(Hint: Suppose f changes sign only k times where  $0 \le k \le n$  and choose p appropriately.)

**Problem 8.** Suppose that  $y \in C^3[a, b]$  satisfies

$$y'(t) = f(t, y(t)) \text{ for } t \in [a, b], \quad y(a) = \gamma,$$

where  $|f(t,v)-f(t,w)| \le L|v-w|$  on  $R=[a,b] \times \mathbb{R}$  for some L>0. Given h=(b-a)/N and  $t_k=a+kh, \ 0\le k\le N$ , consider the one step implicit method

$$y_{k+1} = y_k + h \frac{f(t_k, y_k) + f(t_{k+1}, y_{k+1})}{2}, \quad y_0 = \gamma.$$

(a) Prove that the local truncation error is bounded by  $\frac{h^2}{12}M$  where  $M = \max_{t \in [a,b]} |y^{(3)}(t)|$ . You may use without proof the approximation formula for the trapezoid rule

$$\int_{a}^{b} g(t)dt = (b-a)\left(\frac{g(a)+g(b)}{2}\right) - \frac{g''(\xi)}{12}(b-a)^{3}.$$

(b) Prove that, if Lh < 1,

$$|y(t_k) - y_k| \le \frac{\left(\frac{1 + Lh/2}{1 - Lh/2}\right)^k - 1}{12L} h^2 M$$
 for  $0 \le k \le N$ .