Preliminary Examination in Numerical Analysis

June 1, 2000

Instructions:

e Examination is 3 hours: 9am to noon
e Part I: Numerical Linear Algebra
e Part II: Numerical Differential Equations

e For problems with multiple parts, you may get full credit for
a particular part using results of previous parts even though
you fail to finish these previous parts

e For Part I: Do Problem 1, and one of Problem 2 and
Problem 3



Part I. Numerical Linear Algebra

Problem 1. Rank-revealing QR decomposition. R is n X n and upper
triangular. o, (+) denotes the smallest singular value. [ is the n x n identity
matrix whose jth column is e;. F;; is I with its 7th and jth columns swapped,
ie.,
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1. RFP;; is R with its ¢th and jth columns swapped.
2. Show that if ||Rz||s = € and ||z]2 = 1 then oy (R) < €.

3. It is reasonable to expect that R has a small diagonal entry if R is
nearly singular. Nevertheless this is not true. Consider
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which has no small diagonal entries, but oy, (R) < 27" /n. Prove
this.
Hint: calculate Rv where v = (271 2772 . 2 1)T.

4. Let vector z, ||z||s = 1 satisfy ||Rz||s = €, and jo be the integer such
that [lz]le = [, |-



(a) Show that |x;,| > n=1/2.
(b) Present an algorithm to compute a QR decomposition of RP;,
RP;,, = QR.
at the cost of O(n?) flops.

(c) Show that the last entry 7,,0f R satisfies |Ton] < /ne, and thus
R must have a small diagonal entry if € is small.

Problem 2. Let A be n x m and n > m.

1.

What is Gram-Schmidt process to orthogonalize the columns of A?
Formulate the process into matrix factorization A = QR, and what is
() and what is R? Does Gram-Schmidt process always produce vectors
orthogonal up to around machine epsilon?

. Describe a way that always produce fully orthogonal vectors from the

columns of A? “Fully orthogonal” means orthogonal up to around
machine epsilon.

Compare the speed of Gram-Schmidt process and the method you just
described.

Problem 3. Let A = D + puu?’, where D = diag(dy,ds,...,d,) and u =
(uy, us, ..., u,)’. All numbers are real.

1.

Show that if u; = 0, then d; is an eigenvalue of A and the corresponding
eigenvector is e;, the ith column of the identity matrix.

. Show that if d; = d; 1, then d; is an eigenvalue of A. Derive an expres-

sion for the corresponding eigenvector.
Assume that all u; # 0 and that d; < dy < --- < d, and p > 0.

(a) Show that the eigenvalues of A are the roots of
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(b) Show that this equation has n roots and find n open intervals each
of which contains exactly one root.

(c) Show that if A is a root then the corresponding eigenvector is
parallel to (D — \I) " tu.



Part II. Numerical Differential Equations

Problem 4. This problem is concerned with stability and boundedness analy-
sis for an explicit scheme for the following convection-diffusion problem

U + AUy — EUgyy = 0, (1)

where a and € are convection and diffusion coefficients, respectively, and an
initial data u(z,0) = ug(x) > 0 is assumed.

(a) Formulate the forward-time central-space finite difference scheme for
(1), with a uniform space step h and time step k.

(b) Prove that the scheme is unconditionally unstable when ¢ = 0. (You
may utilize the von Neumann analysis.)

(c¢) Find the stability condition when a = 0.

(d) Given a and ¢, find conditions for the numerical solution to be nonneg-
ative.

Problem 5. Let Q = (0,1)? and its boundary I' = 9. Consider the
boundary value problem: find u € H}(2) such that

(1) _Au:f(xvy)v (l’,y) EQ;

(ii) u=0, (x,y) €T, 2)

where A is the Laplace operator and f is the source function.

(a) Derive the weak form of (2). Sketch an argument which shows that
(2) and its weak form have the same solutions, provided that wu is
sufficiently smooth.

(b) Let 7;, be a uniform triangulation of €2, where h = 1/(N + 1) for some
positive integer N, V" the space of piecewise linear functions defined
on 7, and v € V" the Galerkin approximation of u. Let || - || denote
the L?(Q)-norm. Then, one can see

IV(u—u")| <|IV(u—v)|l, foranyve V™ (3)

Prove (3) and describe, in detail, its implications in error analysis for
the finite element solution.



Problem 6. Consider the initial-boundary value problem

Ut_ux:c_uyy:f(‘rayat)a (l',y,t)GQXJ,
u(z,y,t) =0, (2,y,t) €T x J, (4)
U(x,y,O):UQ(ﬂf,y), ('xvy) 697

where 2 = (0,1)%, T = 99, and J = (0, 7] for some T > 0.

(a) Formulate the Crank-Nicolson central finite difference scheme.
(b) Indicate the accuracy order of the scheme.

(c¢) Formulate the alternating direction implicit (ADI) method by perturb-
ing the formulation obtained in (a); discuss its efficiency and pitfalls in
accuracy.



