Preliminary Examination in Numerical Analysis

June. 9, 2014

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of two parts, each consisting of six equally-weighted problems:
 Part I: Matrix Theory and Numerical Linear Algebra
 Part II: Introductory Numerical Analysis
- 3. You may omit one problem from Part I and one problem from Part II.

PART I - Matrix Theory and Numerical Linear Algebra

Problem 1. Let $X = [x_{ij}] \in R^{n \times n}$ be such that $||X||_{\max} := \max_{i,j} |x_{ij}| < 1/n$. Prove that I - X is invertible and $||(I - X)^{-1}||_{\max} \le 1/(1 - n||X||_{\max})$.

Problem 2. (8 points) Let A = LU be the LU-factorization of A with $|l_{ij}| \leq 1$. Prove that $||U||_{\max} \leq 2^{n-1} ||A||_{\max}$, where $||A||_{\max} = \max_{i,j} |a_{ij}|$.

Problem 3. Let f(e) denote the computational result of an expression e in a floating point arithmetic and let ϵ be the machine roundoff unit. Let A and Q be two $n \times n$ matrices, and assume that Q is orthogonal. Prove that

$$f(AQ) = (A + E)Q, \quad ||E||_2 \le n^3 \epsilon ||A||_2 + \mathcal{O}(\epsilon^2).$$

(You may use without proof that $|fl(x^Ty) - x^Ty| \le |x|^T|y|\delta$ with $\delta \le n\varepsilon + \mathcal{O}(\varepsilon^2)$, $||A||_2 \le \sqrt{n}||A||_1$ and $||A||_1 \le \sqrt{n}||A||_2$.)

Problem 4. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ $(m \ge n)$. Let $A = U \Sigma V^T$ be the singular value decomposition of A, where

$$\Sigma := \left(egin{array}{ccc} \Sigma_1 & 0 \ 0 & 0 \end{array}
ight) \in R^{m imes n}; \; ext{ and } \; \; \Sigma_1 := \left(egin{array}{ccc} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_k \end{array}
ight)$$

with $\sigma_1 \geq \cdots \geq \sigma_k > 0$. Determine when the least squares problem

$$\min_{x \in R^n} \|Ax - b\|_2. \tag{1}$$

has exactly one solution, or infinitely many solutions. Write down the solution or the solution set when it exists.

Problem 5. Let μ be an approximate eigenvalue of an $n \times n$ matrix A and x be an approximate eigenvector with $||x||_2 = 1$. Let $r = Ax - \mu x$. Show that there is an $n \times n$ matrix E with $||E||_2 = ||r||_2$ such that μ is an eigenvalue of A + E with x a corresponding eigenvector.

Problem 6. Consider the shifted QR algorithm for $A \in \mathbb{R}^{n \times n}$:

Algorithm:

$$A_0=A$$
 For $i=0,1,2,\cdots,m$ Factorize $A_i-\mu_iI=Q_iR_i$ (QR -factorization) $A_{i+1}=R_iQ_i+\mu_iI$ End

Prove that $\Pi_{i=0}^{m}(A - \mu_{i}I) = (Q_{0}Q_{1} \cdots Q_{m})(R_{m} \cdots R_{1}R_{0}).$

PART 2 - Numerical Analysis

Problem 7. Find the degree two polynomial p_2 that interpolates $f(x) = \ln(x)$ at $x_0 = 1$, $x_1 = 2$ and $x_2 = 3$. For a point $t \in [1,3]$ give two expressions for the interpolation error $f(t) - p_2(t)$. Your first expression should involve a divided difference, and your second expression should involve some unknown point $\xi \in [a,b]$. Use one of your expression to provide a bound for the interpolation error on $[x_0, x_2]$.

Problem 8. Let $f \in C^1[a,b]$ have a Lipschitz continuous first derivative, i.e., $|f'(x) - f'(y)| \le L|x-y|$ for some L > 0. Suppose there exists an $\alpha \in (a,b)$ such that $f(\alpha) = 0$. Show that there exists a $\delta > 0$ such that for any starting value $x_0 \in [\alpha - \delta, \alpha + \delta]$, Newton's method will converge quadratically to α .

Problem 9. Consider a fixed point iteration $x_{n+1} = g(x_n)$, with g having a Taylor series $g(x) = \alpha + c_1(x - \alpha) + c_2(x - \alpha)^2 + \cdots$, where α is a fixed point of g. What must be true of c_1 to ensure convergence of the fixed point iteration to α for an initial x_0 sufficiently close to α ? Define a procedure similar to Richardson extrapolation for generating a sequence of iterates that converge quadratically to α .

Problem 10. Consider approximating the derivative of a function f(x) at x = 0 by approximating an integral of the form $I = \int_{-h}^{h} t f(t) dt$ with a small fixed h < 1. Verify that the integral has the expansion $I = c_1 h^3 f'(0) + c_2 h^5 f^{(3)}(0) + \cdots$ and write down c_1 and c_2 . Then $\frac{1}{c_1 h^3} I$ would form an $O(h^2)$ approximation to f'(0). Denoting by I_n the approximation to I using an n-point quadrature rule on [-h, h] with equidistant points, what should n be in order for $\frac{1}{c_1 h^3} I_n$ to achieve an $O(h^2)$ approximation to f'(0)? (Note: The n-point quadrature rule here refers to the quadrature rule derived from the interpolating polynomial at n points. It is not the composite quadrature rule.)

Problem 11. Find a nonzero polynomial q of degree two that can be used to find the nodes x_i in the Gaussian quadrature formula

$$\int_0^\infty f(x)w(x)dx \approx \sum_{i=1}^2 w_i f(x_i),$$

where $w(x) = e^{-x}$. The approximation should be exact for all polynomials up to degree 3. State what condition q must satisfy.

Problem 12. Show that the following multistep method is consistent,

$$y_{n+1} = -9y_n + 10y_{n-1} + \frac{h}{2}(13f(x_n, y_n) + 9f(x_{n-1}, y_{n-1})).$$

Is the method stable? For f(x,y) = 0 and and initial conditions $y_0 = 1$, $y_1 = 1$, give an expression for y_i . Is this example consistent with your conclusions regarding the stability?