Preliminary Examination in Numerical Analysis

June 4, 2025

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Let U be an $n \times n$ nonsingular upper triangular matrix. Write down the backward substitution algorithm for solving Ux = b where $b \in \mathbf{R}^n$. Let \hat{x} be the computed solution to Ux = b using this algorithm. Prove that $(U + \delta U)\hat{x} = b$ for some δU with $|\delta U| \leq n\epsilon |U|$ (You may use without proof the fact that $fl(\sum_{i=1}^d x_i y_i) = \sum_{i=1}^d x_i y_i (1 + \delta_i)$ with $|\delta_i| \leq d\epsilon$, ignoring all higher order terms in ϵ .)

Problem 2. Let A be an $n \times n$ invertible matrix and U and V be $n \times k$ (with $n \ge k$) matrices. Prove that the following are equivalent:

- (a) $\begin{pmatrix} A & U \\ V^T & I \end{pmatrix}$ is invertible;
- (b) $I V^T A^{-1} U$ is invertible;
- (c) $A UV^T$ is invertible.

Problem 3. Let U and V be two real $n \times n$ orthogonal matrices and $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ with $0 < \sigma_1 < \sigma_2 < \cdots < \sigma_n$. If $U\Sigma = \Sigma V$, prove that U and V are diagonal matrices of ± 1 .

Problem 4. Let A and B be $n \times n$ symmetric matrices, and suppose B is positive definite. Show that

$$\lambda_k(A+B) \ge \lambda_k(A),$$

for k = 1, 2, ..., n, where $\lambda_k(\cdot)$ denotes the k-th largest eigenvalue of a matrix. Hint: use Courant-Fischer min-max theorem.

Problem 5. Consider $f(x) = \frac{1}{1 + 25x^2}$ with nodes $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.

- (a) Construct the divided difference table and write the Newton's interpolating polynomial $p_2(f;.)$ corresponding to these nodes.
- (b) Show that

$$||f - p_2(f;.)||_{\infty} \le \frac{M_3}{9\sqrt{3}}, \text{ where } M_3 = ||f'''||_{\infty}.$$

Problem 6. Consider the problem of approximating $\sqrt{2}$ as the root of $f(x) = x^2 - 2$.

- (a) Describe Newton's iterative procedure for solving this root finding problem.
- (b) Prove that the convergence of the algorithm in part (a) is quadratic with an appropriate choice of initial value x_0 .

Problem 7.

(a) Construct the weighted Newton-Cotes formula

$$\int_0^1 f(x)x^{\alpha}dx = a_0f(0) + a_1f(1) + E(f), \quad \alpha > -1.$$

- (b) Derive an expression for the error term E(f) in terms of a derivative of f.
- (c) From the formulae in (a) and (b) derive an approximate integration formula for $\int_0^h f(t)t^{\alpha}dt$ (h > 0 small), including an expression for the error term.

Problem 8. Consider the multi-step method for the IVP y' = f(x, y) with $x \in [a, b]$, $y(a) = y_0$. Describe the Predictor-Corrector scheme using the two-step Adams-Bashforth and the two-step Adams-Moulton methods.