PRELIMINARY EXAMINATION 1N PARTIAL DIFFERENTIAL EQUATIONS

4 January 2013
Instructions

This is a three-hoyr €Xamination. The exam is divided into two parts. You should
attempt at least two questions from each part and a total of five questions. Please
indicate clearly on your test paper which five questions are to be graded.

Provide complete solutions to each problem and give as much detail as possible.
More weight will be given to 5 complete solution of one problem than to solutions of

the easy bits from two different problems. Indicate clearly the theorems and defini-
tions you are using
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