DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JANUARY 7, 2013

- 1 Let X be a topological space, and let X_0 be the set X with the finite complement topology. Show that the identity map from X to X_0 is continuous if and only if X is a T_1 space.
- **2** Let X be a topological space . Consider the following conditions:
 - (A) Every family (U_{α}) of pairwise disjoint open sets $U_{\alpha} \subset X$ is countable.
 - (B) There is a countable dense set $S \subset X$.

Show that (B) implies (A) but, in general, (A) does not imply (B).

3 For two topological spaces X and Y, let $\mathcal{C}(X, Y)$ be the space of continuous functions $f: X \longrightarrow Y$ equipped with the compact-open topology. Let $g: Y \longrightarrow Z$ be a continuous map to a third space Z. Prove that the map

$$\Phi: \mathcal{C}(X,Y) \longrightarrow \mathcal{C}(X,Z),$$

defined by $\Phi(f) = g \circ f$ is continuous.

- 4 Let f be a continuous one-to-one function from the unit interval into \mathbb{R}^n . Prove that if $n \geq 2$, then the image of f has no interior.
- 5 Let X be a space and $x_0 \in X$ be any point. We define a map

$$\Phi: \pi_1(X, x_0) \longrightarrow [S^1, X]$$

as follows: Let $f:[0,1] \longrightarrow X$ be a loop at x_0 , i.e. $f(0) = f(1) = x_0$. Then there is a unique continuous map $g: S^1 \longrightarrow X$ satisfying $f = g \circ p$, where $p:[0,1] \longrightarrow S^1$ is the standard map $p(t) = (\cos 2\pi t, \sin 2\pi t)$. The map Φ is then defined by $\Phi([f]) = [g]$.

Prove that $\Phi(\alpha) = \Phi(\beta)$ if and only if α and β are conjugate in $\pi_1(X, x_0)$.

- 6 Let P^2 be the projective plane. Show that every covering map $f: P^2 \longrightarrow P^2$ is a homeomorphism.
- 7 A *knot* is a simple closed curve K in \mathbb{R}^3 . Regard S^3 as a one-point compactification of \mathbb{R}^3 . Prove that if K is a knot, the fundamental groups $\pi_1(\mathbb{R}^3 \setminus K)$ and $\pi_1(S^3 \setminus K)$ are isomorphic.
- 8 Consider the torus $T^2 = S^1 \times S^1 \subset \mathbf{C} \times \mathbf{C} = \mathbf{C}^2$. Let $F: T^2 \longrightarrow T^2$ be the map $F(z_1, z_2) = (z_1^4 z_2^2, z_1^6 z_2^3).$
 - (a) Describe the homomorphism $F_*: \pi_1(T^2) \longrightarrow \pi_1(T^2)$ induced by F.
 - (b) Is F homotopic to a covering map?