DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION, JANUARY 9, 2017

- 1 Consider the rotation action of S^1 on \mathbb{R}^2 . Show that the orbit space \mathbb{R}^2/S^1 by this action is homeomorphic to $[0,\infty)$.
- **2** Let X be a topological space. Suppose for each pair (x, K) of a point $x \in X$ and a closed set K so that $x \notin K$, there are disjoint open sets U and V so that $x \in U$ and $K \subset V$.

Prove that the closure of a compact set in X is compact.

3 A T_1 space X is $T_{3\frac{1}{2}}$ if for every $x \in X$ and open set U containing x, there is a continuous function

$$\chi: X \longrightarrow I$$

so that $\chi(x)=0$ and $\chi\equiv 1$ on X-U. Prove that the product of $T_{3\frac{1}{2}}$ spaces is $T_{3\frac{1}{2}}$.

- 4 Let M be a connected n-manifold.
 - (a) Prove that M is path connected.
 - (b) If $n \geq 2$ and $F \subset M$ is a finite set, prove that M F is path connected.
- 5 Let $X = S^2 \cup (\{(0,0)\} \times [-1,1])$ be the union of the sphere and a diameter, and let $Y = X \vee S^1$. Compute the fundamental group of Y.
- 6 There are spaces with nonabelian fundamental groups. Use this fact to show that the fundamental group of $S^1 \vee S^1$ is nonabelian. (This problem does not ask you to compute $\pi_1(S^1 \vee S^1)$ and this computation will not be considered a solution.)
- 7 Let $p: E \longrightarrow B$ be a covering map. Suppose p has a right inverse s, i.e. a continuous map $s: B \longrightarrow E$ such that $p \circ s = \mathrm{id}_B$. Prove that if E is path connected, then p is a homeomorphism.
- 8 Let X be a connected graph and Y be a connected subgraph. Show that the map

$$\pi_1(Y) \longrightarrow \pi_1(X)$$

induced by inclusion is injective.