DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination January 4, 2019

- 1 Let $X = \{a, b, c, d\}$, with open sets \emptyset , $\{a, b\}$, $\{c\}$, $\{a, b, c\}$, and $\{a, b, c, d\}$, and let $Y = \{0, 1\}$ with open sets \emptyset , $\{0\}$, and $\{0, 1\}$. Show that the function $f: X \longrightarrow Y$ defined by f(a) = f(b) = 0 and f(c) = f(d) = 1 is a quotient map that is not an open mapping.
- 2 Let $f: X \longrightarrow Y$ be a closed, continuous, surjective map such that $f^{-1}(y)$ is a compact subspace of X for each $y \in Y$. Show that if Y is compact, then so is X.
- 3 Write Comp(X) for the set of connected components of X.
 - (a) Show that a homeomorphism $X \stackrel{\cong}{\to} Y$ induces a bijection $\operatorname{Comp}(X) \stackrel{\cong}{\to} \operatorname{Comp}(Y)$.
 - (b) Let G be a topological group, and consider the function $c: G \longrightarrow \operatorname{Comp}(G)$ which takes each point to its connected component. Show that the group structure on G induces a group structure on $\operatorname{Comp}(G)$ for which c is a group homomorphism.
- 4 Let F be a finite set, equipped with the discrete topology, and let Y be any space. Show that the compact-open topology on $\operatorname{Map}(X,Y)$ agrees with the product topology $\prod_{X} Y$.
- 5 Let X be the union of a sphere (S^2) and two diameters, as in the graphic to the right. Compute the fundamental group of X.

- 6 $^{\text{-}}$ Describe all coverings of $\mathbb{RP}^2\times\mathbb{RP}^2$ up to isomorphism.
- 7 Let $f: S^1 \longrightarrow S^1$ be a degree three map, and let $X = S^1 \cup_f D^2$ be the result of attaching a 2-cell to S^1 along the map f. Show that X is not a manifold.
- 8 Let $f: S^1 \longrightarrow S^1$ be an odd map (i.e. f(-x) = -f(x)) such that $f(x_0) = x_0$ for some $x_0 \in S^1$. Show that $f_*: \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, x_0)$ is multiplication by some odd integer.