- 1. Let $U \subset \mathbb{R}^n$ be a bounded, nonempty, open subset. Show that the quotient space \mathbb{R}^n/U is not Hausdorff.
- 2. Show that if A and B are compact subspaces of a space X, then so is $A \cup B$. If in addition, X is Hausdorff, show that $A \cap B$ is compact.
- 3. The configuration space of k points in \mathbb{R}^2 , denoted C(k, 2), is defined to be the collection of all ordered tuples (x_1, \ldots, x_k) where $x_i \in \mathbb{R}^2$ for all i and $x_i \neq x_j$ when $i \neq j$. The topology on this space comes from the fact that it is a subset of $(\mathbb{R}^2)^k$.
 - (a) Produce a homeomorphism $C(1,2) \cong \mathbb{R}^2$.
 - (b) Produce a homeomorphism $C(2,2) \cong \mathbb{R}^2 \times (0,\infty) \times S^1$
- 4. For $x \in I = [0, 1]$, let

$$U_x = S\left(\{x\}, \left(x - \frac{1}{4}, x + \frac{1}{4}\right) \cap I\right)$$

where S(C, U) is the set of continuous functions $f: I \to I$ so that $f(C) \subset U$.

- (a) Show that the $\{U_x\}_{x\in I}$ are an open cover of C(I, I) with the compact open topology.
- (b) Let $\{U_{x_1}, U_{x_2}, \dots, U_{x_n}\}_{x_1 < x_2 < \dots < x_n}$ be any finite collection of the U_x . Construct a continuous map $I \to I$ not in $U_{x_1} \cup U_{x_2} \cup \dots \cup U_{x_n}$
- 5. Let $T^2 = S^1 \times S^1$ denote the torus, and $\mathbb{R}P^2 = S^2 / \sim$, where \sim is the relation $v \sim -v$ on S^2 , denote the real projective plane.
 - (a) Prove that every continuous map $\mathbb{R}P^2 \to T^2$ is homotopic to a constant map.
 - (b) Show that there is no covering map $T^2 \to \mathbb{R}P^2$.
- 6. Give explicit descriptions of two non homeomorphic, connected, two-sheeted covers of $\mathbb{R}P^2 \vee \mathbb{R}P^3$.
- 7. (a) Describe a connected space X such that $|\pi_1(X, x_0)| = 10$. (No proof necessary for this part.)
 - (b) For X as in part a), suppose that \tilde{X} is a connected space and that $p: \tilde{X} \to X$ is a covering map. Is it possible that $|p^{-1}(x_0)| = 6$? Justify your answer
- 8. Suppose X_1, \ldots, X_m are convex open subsets of \mathbb{R}^n such that the triple intersection $X_i \cap X_j \cap X_k$ is nonempty for all i, j, k.
 - (a) Show that $(X_1 \cup \ldots \cup X_{m-1}) \cap X_m$ is path connected and nonempty.
 - (b) Show that the fundamental group of $X_1 \cup \ldots \cup X_m$ is trivial. (Hint: use induction and part (a)!)