Topology Preliminary Exam January, 2023

On grading: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

1. A function (not necessarily continuous) $f: X \rightarrow Y$ is called proper if for any compact $K \subseteq Y, f^{-1}(K)$ is compact in X.
a. Give an example of a continuous function that is not proper.
b. Show that any proper function from a Hausdorff space X to a compact space Y is continuous.
2. Let $f: X \rightarrow Y$ be a quotient map. Assume that Y is connected and that each fiber $f^{-1}(y)$ for $y \in Y$ is connected as a subspace of X. Show that X is connected.
3. Let $S=\{a, b\}$ equipped with the generic point topology around a (a nonempty subset is open if it contains a). Let X be another space equipped with the generic point topology around $x \in X$. Note that X is based at x.
a. Show that a continuous map $f: S \rightarrow X$ satisfies $f(a)=x$ or $f(a)=f(b)$.
b. Produce a bijection (of sets) $C(S, X) \rightarrow X \vee X$, where $X \vee X$ is the wedge sum (viewed as a set). Here $C(S, X)$ is the set of continuous maps.
c. Let $\operatorname{Map}(S, X)$ be the set of continuous maps from S to X equipped with the compact open topology. Do the topologies on $\operatorname{Map}(S, X)$ and $X \vee X$ coincide?
d. Is $\operatorname{Map}(S, X)$ Hausdorff?
4. Assume that X is a path connected space and $x_{0}, x_{1}, x_{2} \in X$. Prove that $\pi_{1}\left(X, x_{2}\right) \cong 0$ if and only if any two paths from x_{0} to x_{1} are homotopic through paths from x_{0} to x_{1}.
5. Let W be the quotient of S^{2} defined by imposing the (antipodal) relation $x \sim-x$ on the equator and also on a great circle (a longitudinal circle). Find the fundametal group of W.
6. Let G be a finite group acting freely on S^{3} and let $Z=S^{3} / G$. Show that any continuous map from Z to a graph (i.e. a 1-dimensional $C W$-complex) must be null-homotopic.
7. a. Let K be the Klein bottle and let $x \in K$ be a point. Find $\pi_{1}(K, x)$.
b. Use the Hurewicz theorem to compute the homology group $H_{1}(K, \mathbb{Z})$.
c. Use that $H_{n}(K ; \mathbb{Z})=0$ for $n \geq 2$ to compute the homology groups $H_{i}(K ; \mathbb{Z} / 2)$ for all $i \geq 0$.
8. Compute the relative homology group $H_{*}(X, A ; \mathbb{Z})$ for the following pairs:
a. $X=S^{2}, A$ is the equator.
b. X is the Mobius band, A is the boundary.
