DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination
 Jandary 3, 2024

Instructions: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

1) Let $f: X \longrightarrow Y$ be a function. Show, from the definition of a continuous function, that f is continuous if and only if for every subset $A \subset X$ and every limit point p (i.e. accumulation point) of A, the image $f(p)$ belongs to $\overline{f(A)}$.

Note that you are NOT permitted to use the fact that f is continuous if and only if $f(\bar{A}) \subset \overline{(f(A)}$ for every A.
2) Show that if X can be equipped with a CW structure using only finitely many cells, then X is compact.
3) For spaces W and Z, let $\operatorname{Map}(W, Z)$ denote the space of continuous maps $W \rightarrow Z$, equipped with the compact-open topology.

Suppose that A and B are locally compact and Hausdorff, and let X and Y be any spaces. Show that the map

$$
P: \operatorname{Map}(A, X) \times \operatorname{Map}(B, Y) \longrightarrow \operatorname{Map}(A \times B, X \times Y)
$$

defined by $P(f, g)=f \times g$ is continuous.
4) Find all covers (in the sense of covering spaces) of the Mobius strip.
5) Let $p: E \longrightarrow B$ be a covering, with E and B connected and locally path-connected, and pick a basepoint $e_{0} \in E$. Show that the subgroup $p_{*} \pi_{1}\left(E, e_{0}\right) \leq \pi_{1}\left(B, p\left(e_{0}\right)\right)$ is normal if and only if the group $\operatorname{Aut}_{B}(E)$ of deck transformations acts transitively on the fiber $F=p^{-1}\left(p\left(e_{0}\right)\right)$.
6) Let X be the quotient of the square $I \times I$ with respect to the equivalence relation generated by $(t, 0) \sim(1, t / 2)$ for all $t \in I$ and also $(0,1) \sim(1,1)$.
(a) Describe a CW structure on X
(b) Use the CW structure to find a presentation for $\pi_{1}(X)$ and show that this is a familiar group.
7) Suppose that X is a space that admits a cover by open subsets U and V such that U and V are both homotopy equivalent to S^{2} and $U \cap V$ is homotopy equivalent to S^{1}. Calculate all of the homology groups of X.
8) Compute the singular homology groups of the 3-dimensional real projective space $\mathbb{R P}^{3}$. You may use knowledge of the homology groups $H_{*}\left(\mathbb{R}^{2}\right)$.

