

Topology Preliminary Exam

January, 2026

On grading: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

1. (a) Let X be a Hausdorff space such that all subsets of X are compact. Prove that X is finite.
(b) Give, with proof, an example of an infinite topological space X such that all subsets of X are compact.
2. Let $\{0, 1\}$ be the space with two elements and the discrete topology. Let

$$X = \{0, 1\} \times \{0, 1\} \times \{0, 1\} \times \dots,$$

the countably infinite product of $\{0, 1\}$'s. Recall that a space is separable if it has a countable dense subset.

- (a) Show that if X is given the product topology, then it is separable.
(b) Show that if X is given the box topology, then it is not separable.
3. Let G be a topological group.

- (a) Suppose that G is locally path-connected. Write G_e for the path-component of the identity element. Show that G is homeomorphic to $G_e \times \pi_0(G)$, where $\pi_0(G)$ is given the discrete topology.

- (b) Show that (a) fails if G is not locally path-connected.

4. Let Z denote the quotient of the square $[0, 1] \times [0, 1]$ obtained by identifying the four corners $(0, 0) \sim (1, 0) \sim (0, 1) \sim (1, 1)$. Prove that Z is not simply connected.

5. Let M and N be connected n -manifolds, and let $M \# N$ be their connected sum. Show that, if $n \geq 3$, then $\pi_1(M \# N)$ is the free product $\pi_1(M) * \pi_1(N)$.

6. Let X be path-connected, locally path connected, and semilocally simply-connected. Assume that $p: X \rightarrow X$ is a non-injective covering map. Prove that $\pi_1(X, x_0)$ is infinite for any choice of base point $x_0 \in X$.

7. Suppose that M is a connected, compact surface. Assume that $H_1(M; \mathbb{Z})$ is isomorphic to $\pi_1(M)$ and M has odd Euler characteristic. Which of the standard surfaces could M be homeomorphic to? Justify your answer.

8. Let T^2 be the torus and K be the Klein bottle.

- (a) Describe a 2-sheeted covering $q: T^2 \rightarrow K$.
(b) Describe the resulting homomorphisms $q_*: H_n(T^2; \mathbb{Z}) \rightarrow H_n(K; \mathbb{Z})$ on homology groups.