DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JUNE 3, 2016

- 1 Let X be a topological space and suppose there is a $p \in X$ such that if $U \subset X$ is open and $p \in U$, then U = X. Show that X is compact and path-connected.
- 2 For two topological spaces X, Y, let $\mathcal{C}(X, Y)$ be the space of continuous functions $X \longrightarrow Y$ with the compact-open topology. Prove that if Y is Hausdorff, then so is $\mathcal{C}(X,Y)$.
- 3 Let $f: X \times C \longrightarrow \mathbf{R}$ be continuous. Assume that C is compact and set $g(x) = \max \{ f(x,c) \mid c \in C \} .$

(Since C is compact, there is a maximum.) Show $g: X \longrightarrow \mathbf{R}$ is continuous.

- 4 Given a continuous map $f: A \longrightarrow Y$, where A is a subspace of a space X, prove that f can be extended over X if and only if Y is a retract of $X \cup_f Y$.
- 5 Let $f:S^2\longrightarrow S^2$ be a continuous function without fixed points. Prove that f is surjective.
- 6 Let M_1 and M_2 be connected n-manifolds and let $M_1 \# M_2$ be their connected sum. Prove that if $n \geq 3$, then $\pi_1(M_1 \# M_2)$ is the free product of $\pi_1(M_1)$ and $\pi_1(M_2)$.
- 7 Let X be a space, and let $a=(1,0)\in S^1\subset {\bf R}^2$ and $A=(S^1\times\{a\})\cup (\{a\}\times S^1)\subset S^1\times S^1=T^2.$

Prove that the following are equivalent:

- (a) For every $x_0 \in X$, $\pi_1(X, x_0)$ is abelian.
- (b) Every continuous map $f: A \longrightarrow X$ extends to a continuous map $g: T^2 \longrightarrow X$.
- 8 Let $p: \tilde{G} \to G$ be a continuous homomorphism of topological groups such that (\tilde{G}, p) is a path-connected covering space of G. Let K denote the kernel of p.
 - (a) Show K is a discrete subspace of \tilde{G} which is contained in the center of \tilde{G} .
 - (b) For each element $k \in K$, define a map $\phi_k : \tilde{G} \to \tilde{G}$ by $\phi_k(x) = xk = kx$. Prove the map $k \mapsto \phi_k$ is an isomorphism from K to the group of deck (or covering) transformations of (\tilde{G}, p) .