DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination June 6, 2018

- 1 Show that for every continuous map $f: X \longrightarrow Y$ there is a space Z, a quotient map $q: X \longrightarrow Z$, and an injective (continuous) map $i: Z \longrightarrow Y$ such that $f = i \circ q$.
- 2 Let X be a locally compact Hausdorff space. Prove that if X has no compact connected components, then the one-point compactification of X is connected.
- 3 Let $f: X \longrightarrow Y$ be a quotient map of topological spaces such that Y is connected and each fiber $f^{-1}(y)$, $y \in Y$, is a connected subspace of X. Show that X is connected.

Find a counterexample if f is only assumed to be a continuous surjection.

4 Let X be a G-space, where G is a discrete group. If H is a subgroup of G, define $X^H = \{x \in X \mid hx = x \text{ for all } h \in H\}.$

Give X^H the subspace topology.

Let $\operatorname{Map}_G(G/H,X)$ be the set of all G-equivariant maps $G/H \longrightarrow X$. Give this the subspace topology from the compact-open topology on the maps $G/H \longrightarrow X$. Show that $\operatorname{Map}_G(G/H,X)$ and X^H are homeomorphic.

- 5 Let X be obtained by glueing together two copies of S^2 , where the glueing identifies the two south poles and separately identifies the two north poles. Find $\pi_1(X)$.
- 6 Let $p: S^n \longrightarrow \mathbf{RP}^n \ (n \geq 2)$ be the standard two-fold covering, and let $X \subset \mathbf{RP}^n$. Prove that $p^{-1}(X)$ is path-connected if and only if X is path-connected and the inclusion $i: X \hookrightarrow \mathbf{RP}^n$ induces a surjection $i_*: \pi_1(X, x_0) \longrightarrow \pi_1(\mathbf{RP}^n, x_0)$ for all $x_0 \in X$.
- 7 Describe all coverings of $S^1 \vee S^2$ up to isomorphism.
- 8 Construct a connected (not necessarily finite) graph X and continuous endomorphisms $f,g:X\longrightarrow X$ so that $f\circ g$ is the identity map, but f and g do not induce isomorphisms on π_1 .