DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination June 5, 2019

- 1 Let \mathbb{R} be the real line with the standard topology.
 - (a) Prove or disprove that $\mathbb{R}/(0,1)$ with the quotient topology is homeomorphic to \mathbb{R} .
 - (b) Prove or disprove that $\mathbb{R}/[0,1]$ with the quotient topology is homeomorphic to \mathbb{R} .
- 2 Let $x \in X$ and $y \in Y$. Furthermore, let C_x be the connected component of x in X, and similarly let C_y be the connected component of y in Y. Show that $C_x \times C_y$ is the connected component of (x,y) in $X \times Y$.
- 3 Let G be a topological group that is T_0 . (Recall that a space is T_0 if, for each pair of distinct points, at least one of the points has a neighborhood not containing the other point.)
 - (a) Show that points are closed in G.
 - (b) Use the map $\varphi: G \times G \longrightarrow G$, defined by $\varphi(g,h) = gh^{-1}$, to show that G is Hausdorff.
- 4 Let $f: X \longrightarrow Y$ be a closed map for which $f^{-1}(y)$ is compact for all $y \in Y$. Show that if X is Hausdorff, then the subspace f(X) of Y is also Hausdorff.
- 5 Show that every map $f: \mathbb{RP}^n \longrightarrow S^1$ is homotopic to a constant map.
- 6 Let X be the space obtained from the torus $T = S^1 \times S^1$ by attaching a Mobius band M using a homeomorphism from the boundary circle of M to $S^1 \times \{x_0\} \subset T$. Compute $\pi_1(X, x_0)$.
- 7 Let K be the Klein bottle and let $T = S^1 \times S^1$ be the torus. Can there exist a covering map $K \longrightarrow T$? Why or why not?
- 8 Let X be path-connected, locally path-connected, and semilocally simply-connected. Assume that $p\colon X\longrightarrow X$ is a non-injective covering map. Prove that $\pi_1(X,x_0)$ is infinite for any choice of basepoint $x_0\in X$.