Topology Preliminary Exam June, 2025

On grading: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

- 1. Let (Y, d) be a metric space.
- a. For $p \in Y$, show that the function $f: Y \to \mathbb{R}$ defined by f(x) = d(x, p) is continuous.
- b. Show that if Y is a connected metric space that contains at least two distinct points, then Y is uncountable.
- 2. Embed in the plane the countable family of circles

$$C_n = \left\{ (x,y) \in \mathbb{R}^2 \mid (x - \frac{1}{n})^2 + y^2 = \frac{1}{n^2} \right\}, \quad n = 1, 2, \dots$$

and let

$$H = \bigcup_{n=1}^{\infty} C_n \subset \mathbb{R}^2,$$

be the Hawaiian earring.

- a. Show that H is compact.
- b. Recall that a space X is locally simply-connected if it admits a basis of simply connected opens. Prove that H is not locally simply-connected.
- c. Conclude that H cannot be given the structure of a 1-manifold.
- **3.** a. Let X be Hausdorff and let $A \subseteq X$ be a subspace. Show that if there is a retraction $r \colon X \to A$, then A is closed in X.
- b. Let X be compact Hausdorff. Let C be a nonempty closed subset of X, and let $U = X \setminus C$ be the complement of C. Show that the quotient X/C is a one-point compactification of U.
- **4.** Let X be a space with finite fundamental group. Show that any map $f: X \to S^1$ must be null-homotopic.
- **5.** Let K be the Klein bottle and let p, q be distinct points in K. Compute $\pi_1(K \setminus \{p, q\})$ with any choice of basepoint.
- **6.** Let M be the Mobius band obtained by identifying the edges of the rectangle $[0,1] \times [0,1]$ via $(0,t) \sim (1,1-t)$. Write m for the image of (0,0). Recall that $\pi_1(M,m) \cong \mathbb{Z}$. For each integer $n \geq 1$ construct a connected n-sheeted covering

$$p_n \colon E_n \longrightarrow M$$

whose corresponding subgroup of $\pi_1(M, m)$ is $n\mathbb{Z}$.

7. Let $X = \Delta^3$ be the standard 3-simplex. That is,

$$X = \{(r_1, r_2, r_3, r_4) \in \mathbb{R}^4 \mid r_1 + r_2 + r_3 + r_4 = 1, r_i \ge 0 \text{ for } i = 1, 2, 3, 4\}.$$

Let $A \subset X$ be the union of the 1-dimensional faces of X. Compute the relative homology groups $H_n(X, A)$ for all n.

8. Begin with the wedge of two pointed circles $S^1 \vee S^1$. Let $\alpha \colon S^1 \to S^1 \vee S^1$ be the path composition of the path that first winds around the left circle m times with the path that then winds around the right circle n times. Define $X_{m,n}$ to be the space obtained by attaching a 2-cell to $S^1 \vee S^1$ along the map α . Compute the integral homology groups $H_q(X_{m,n}; \mathbb{Z})$ in terms of m and n.