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My current research lies in two different areas of mathematics:

1. The subfield of algebraic topology called equavariant stable homotopy theory.

2. Applications of combinatorial topology and geometry in the social sciences.

1 Equivariant Stable Homotopy Theory

1.1 Background. In algebraic topology, our primary goal is to distinguish topological spaces
using algebra. We do this by assigning algebraic objects, often groups, to our spaces in a
coherent fashion. The homotopy groups of a space X, denoted πn(X) are a classic example
in which we assign groups to a space. πn(X) is formed by taking equivalence classes of maps
Sn → X. Homotopy groups give significant information regarding the structure of a space
but unfortunately are notoriously difficult to compute. To get around this, we often consider
changing spaces into more algebraic objects called spectra on which homotopy calculations
are simpler to perform. Stable homotopy theory refers to using spectra.

1.2 Group actions. While homotopy groups provide a significant amount of information
about a space or spectrum, we would also like to study the symmetries of a space in this
context. We do this in equivariant homotopy theory by letting a group act on a space, or
in the stable environment, spectrum X and then use the G-maps Sn → X to define the
homotopy groups. We can encode even more information by considering not only the action
of the entire group, but also the action of subgroups of G. The equivariant stable homo-
topy groups of a spectrum X are computed as πn(XH), that is, the homotopy groups of the
H-fixed points of X for each H ≤ G. When we keep track of all subgroup data, instead of
πn(X) we will write πn(X).

1.3 Equivariant Slice Filtration. Often in mathematics, we try to better understand an ob-
ject by using a filtration to see how it is build from smaller pieces. For example, in algebra,
we may look at a nested sequence of normal subgroups to better understand the nature of
the entire group. In stable homotopy theory, we also use filtrations to study spectra. The
equivariant slice filtration, or slice tower, is a tool that helps us to look at the smaller pieces
of a spectrum with a group action.

To construct the slice tower of a spectrum X with a
group action, partially shown at the right, we make a new
spectrum P nX for each layer by making maps from certain
spheres of dimension ≥ n with group actions trivial. For
example, by making the maps Sn → X trivial, we have
πn(X) = 0. By doing this we have maps P nX → P n−1X.
We write the fiber, or preimage of a particular point in the
image, of such maps as P n

nX and call it the n-slice of X.
The maps P nX → P n−1X along with their fibers make up
the slice tower of X.
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1.4 Current Work & Future Directions. While the slice filtration has been used success-
fully to prove some interesting results, much about the way it filters objects is unknown.
As such, it would be nice to compute the slice tower for a variety of spectra with group
actions for different groups. In my dissertation, I computed the slice towers of particular
spectra of the form Sn∧HZ where the group G was a cyclic p-group for odd primes p. While
purely homotopically speaking, such spectra are very simple, when we view them equivari-
antly there is a lot more interesting structure. I would like to expand my results concerning
the spectra described above to cyclic 2-groups. I have already a description pertaining to
the cyclic group of order 4. It would also be nice to expand to other cyclic groups whose
subgroups are not all nested. This would provide even more information about the slice fil-
tration. Lastly, I would like to expand the scope of my work to include spectra of other forms.

2.1 Applications to Social Science - Voting Theory

2.1.1 Background. In my research, I consider the system of approval voting. In approval
voting, voters cast votes for all platforms they approve of rather than voting for only one
candidate. The winning candidate is the one whose platform is approved by the most voters.

A society of voters S = (X, V,A) consists of X, a spectrum of platforms; V , a set of
voters; A, a collection of approval sets Av for each v ∈ V . For example, we might consider
the society of voters in the U.S. voting for presidential candidates. The spectrum could
be thought of as R where the further left we look, the more liberal the platform, and the
further right, the more conservative. Then the approval sets in A would be intervals on this
line reflecting each voters political views. Such a society is called a linear society. For any
society, the size of the society, written |S|, is the number of voters.

The agreement number a(S) of a society is the maximum number of voters that approve
the same platform. Of primary concern is the question: For a given society S, can we
determine a lower bound on a(S)? For instance, is is possible to know that there will be a
platform that is approved by at least half the voters? To attempt to answer this question,
it can be helpful to identify the agreeability of the society. A (k,m)-agreeable society is one
in which among every collection of m voters, at least k of them agree on a platform.

2.1.2 Product Societies. I am currently studying (along with K. Mazur, M. Sondjaja,
and M. Wright) voting societies under approval voting that may be considered as a product
of other societies. For example, we may consider a society with a spectrum X = R×R where
the two linear societies may reflect two different spectra of platform types. An approval set
in this society is a product of two intervals, or a rectangle in the plane. In this context, we
ask: If we know the agreement number of particular societies, what can we say about the
agreement number of their product?

We have the following result: Theorem Suppose S = S1 × S2 is a (k,m)-agreeable
society. If S is large enough, a(S) ≥ a(S1)a(S2).

We are currently working on analyzing this bound to see how good it is. For example,
when looking at the society with X = R×R described above, there are other bounds already
known for the agreement number. We would like to determine, if possible, an example for
which our bound is strict or at least smaller than the known bound.



2.1.3 Helly’s Theorem. For (k,m)-agreeable linear societies, there are already determined
bounds for the agreement number. When k = m = 2, sometimes called a super-agreeable
society, the agreement number is the size of the society. In other words, there is a platform
that is approved by all voters. The proof follows from Helly’s Theorem: Given n convex sets
in Rd where n > d, if every d+1 of them intersect at a common point, then they all intersect
at a common point. Of course, for linear societies we only need the case when d = 1. The
proof is enlightening in that it givens an idea of the position of the point of intersect relative
to the sets.

When m > k there is also a result about the agreement number. However, the proof
relies on translating the society using graph theory and this does not give much informa-
tion about the location of the platform agreed upon by the most candidates. I have begun
working (along with K. Mazur, A. Ruiz, and F. Su) on developing a proof akin to the proof
of Helly’s Theorem. This would give a better idea about what (k,m)-agreeable linear soci-
eties must look like and where the maximum number of voters in agreement is likely to occur.

2.2 Fair Division Problems

In dividing up a collection of goods among a group of people, if we allow each person
to express preferences over the various options, we might ask: Is there a way to divide the
goods in such a way that no person prefers another’s allotment more than their own? This
is the question we aim to answer when looking for an envy free division of goods. As the
collection of options can often be thought of as a topological or geometric space, we can
use results from such fields to aid in the search for an envy-free division. One such result
is Sperner’s Lemma: Any Sperner-labelled triangulation of an n-simplex must contain an
odd number of fully labelled elementary n-simplices. In particular, there is at least one.

Sperner’s Lemma can be applied to fair division problems in such a way that locating a
fully labelled simplex corresponds to locating an envy-free division. In a paper by F. Su, we
see that since there is a constructive proof of Sperner’s Lemma, not only can we guarantee
in many cases that there will be an envy-free division, but there is an algorithm that will
locate such a division. This method works primarily for (reasonably) continuously divisible
goods, though it can be adapted to indivisible or discrete objects in certain cases.

There is still much to consider in this area. For example, the algorithm mentioned above
works only in the case we have one collection to divide. The case where we have more than
one collection or type of object to portion out is much more difficult and in some cases, there
is no envy-free division possible. I would like to continue working on some variants of these
fair division problems.

2.3 Undergraduate Research

In either of the areas mentioned in 2.1 and 2.2, undergraduates could easily be involved.
There are a collection of papers relating to these areas that are readable and I expect that
not only could I involve students in the work I am currently performing, but they could form
their own questions about this work that we could investigate together. Please see Francis
Su’s letter regarding the possibilities in working with students in this area.


