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The focus of my research has been in the area of infinite-dimensional Lie algebras. In my
Ph. D. thesis [11] and in [12], I examined problems relating to the representation theory of
affine Lie algebras and their close relatives, the Heisenberg algebras. Since their introduction
by V. Kac and R. Moody, affine Lie algebras and their highest weight representations have
been studied extensively and have been shown to have many applications in such diverse areas
as integrable systems, partition identities, special functions, combinatorics, vertex operator
algebras, and physics. Currently, I am also working on problems relating to n-point affine
Lie algebras, which are generalizations of affine Lie algebras. These infinite-dimensional
Lie algebras, as well as the Virasoro algebra, are subclasses of the affine Krichever-Novikov
algebras, which were introduced in [23]-[25]. These algebras relate to some fundamental
problems in geometry, analysis and mathematical physics, such as the twenty-first of the
twenty three Hilbert problems, which is more commonly known as the Riemann-Hilbert
problem [35]. My work offers several directions for further research within representation
theory, quantum groups, vertex operator algebras, combinatorics and mathematical physics.

1. Whittaker modules for Heisenberg and Affine Lie Algebras

In R. Block’s classification [2] of all irreducible modules for the Lie algebra sl2 of traceless
2× 2 complex matrices, the irreducible sl2-modules fall into three families: highest (lowest)
weight modules, Whittaker modules, and a third family obtained by localization. This result
illustrates the prominent role played by Whittaker modules in the representation theory of
Lie algebras.

In my thesis [11], I investigated a particular class of representations for affine Lie algebras
which resemble the Whittaker modules for finite-dimensional semisimple Lie algebras, and
therefore I refer to them as Whittaker modules. My thesis is the first work to develop a
theory of Whittaker modules for affine Lie algebras.

Let g be a Lie algebra with triangular decomposition g = n− ⊕ h ⊕ n+ (see [30]), where
h is a Cartan subalgebra of g. For example, if g = gln, the Lie algebra of n × n matrices,
then h is the subalgebra of diagonal matrices and n+ (respectively n−) is the subalgebra
of strictly upper (respectively strictly lower) triangular matrices. Examples of Lie algebras
with triangular decomposition are the finite-dimensional semisimple Lie algebras, the affine
Lie algebras, the Virasoro algebra, and Heisenberg algebras extended by derivations. Let
U(n+) be the (universal) enveloping algebra of n+ and let η : U(n+) → C be an algebra
homomorphism such that η|n+ 6= 0. A Whittaker module for g of type η is any g-module V
that is generated by a vector w (known as a Whittaker vector) which is an eigenvector for n+

with eigenvalues given by η. Thus xw = η(x)w for all x ∈ n+. (The excluded case η|n+ = 0
leads to the well-known highest weight modules).

The class of Whittaker modules for an arbitrary finite-dimensional complex semisimple Lie
algebra g was defined by B. Kostant in [22]. He termed these modules Whittaker because of
their connections with Whittaker equations in number theory. In [37], N. Wallach gave new
proofs of Kostant’s results in the case g is the product of complex Lie algebras isomorphic to
sln. E. McDowell [28], and D. Miličić and W. Soergel [29] studied a category of modules for an
arbitrary finite-dimensional complex semisimple Lie algebra g which includes the Bernstein-
Gelfand-Gelfand category O as well as those Whittaker modules W which are locally finite
over the center Z(g) of the enveloping algebra U(g) of g (i.e. Z(g)v is finite-dimensional
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for each v ∈ W ). Recently, certain categories of generalized Whittaker modules have been
shown to have connections with the representation theory of finite W-algebras in the work
of A. Premet [33], and J. Brundan, A. Kleshchev [5]. In the quantum setting, M. Ondrus
classified Whittaker modules for the quantum enveloping algebra Uq(sl2) in [31].

In my thesis [11] I construct Whittaker type modules for affine Lie algebras using parabolic
induction. Lie algebras with triangular decomposition come equipped with an involution
σ : n+ → n−. A Lie subalgebra p is called a parabolic subalgebra if h ⊂ p and p + σ(p) = g.
In [15], V. Futorny classified the parabolic subalgebras of affine Lie algebras and showed
that every parabolic subalgebra p has a decomposition p = l ⊕ r, where l is called the
Levi factor of p, and l is either a finite-dimensional reductive Lie algebra or l contains an
infinite-dimensional Heisenberg algebra. The parabolic subalgebras of the first type are called
standard if they contain h⊕ n+ and they have motivated my work described in Section 1.1.
The parabolic subalgebras of the second type inspired my work described in Sections 1.2 and
1.3.

1.1. Whittaker Modules Induced from Standard Parabolic Subalgebras. For this
section, let g be an affine Lie algebra (see [20]). In [11], given a triangular decomposition
g = n− ⊕ h ⊕ n+ and an algebra homomorphism η : U(n+) → C such that η|n+ 6= 0 and
η is zero on at least one of the generators of n+, I associate to η a standard parabolic
subalgebra p of g. I study Whittaker modules M(W ) of type η for g, which are constructed
by inducing over the subalgebra p starting from irreducible Whittaker modules W for the
finite-dimensional reductive Levi factor l of p. I show that M(W ) has a unique irreducible

quotient L(W ). For the rest of this section, I specialize to the case g = ŝl2. The affine Lie

algebra ŝl2, also denoted A
(1)
1 , is the “smallest” infinite-dimensional Kac-Moody Lie algebra,

but perhaps the most important. Every parabolic subalgebra with a finite-dimensional Levi
factor for g (for a fixed set of simple roots π) contains h ⊕ n+, and the semisimple part of
its Levi factor is isomorphic to sl2. In this case, I was able to show the following result

classifying certain Whittaker modules for ŝl2:

Theorem 1. [11] Assume g = ŝl2. Let η : U(n+) → C be an algebra homomorphism such
that η|n+ 6= 0 and η(eα) = 0 for some generator eα of n+, and let p be the standard parabolic
subalgebra associated to η. Let V be an irreducible Whittaker module of type η for g. Then
there exists an irreducible Whittaker module W for the finite-dimensional Levi factor l of the
subalgebra p such that V ∼= L(W ).

In [11], I also establish an irreducibility criterion for the modules M(W ) for g = ŝl2.

1.2. Whittaker Modules for Heisenberg Algebras. Heisenberg algebras arise naturally
in the following context: Let P = C[tj]j∈Z>0 be the polynomial algebra over C in infinitely
many commuting variables tj, j ∈ Z>0. Consider the following linear operators on P : Lj

acts as multiplication by tj,
∂

∂tj
acts as the partial derivative with respect to tj, and 1 acts

as the identity operator. The linear span t of all these operators is an infinite-dimensional

Heisenberg algebra with [Li, Lj] = [
∂

∂ti
,

∂

∂tj
] = 0, [

∂

∂ti
, Lj] = δij1, and [t, 1] = 0. Moreover,

t is Z-graded (as a Lie algebra). The Heisenberg algebras which I consider in [11, 12] are
infinite-dimensional and can be realized as above. Let t =

⊕
i∈Z ti be an infinite-dimensional

Heisenberg algebra of this type with a one-dimensional center t0 = Cc. If V is an irreducible
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t-module, then c acts as a scalar, called the level. In [11, 12], I describe the irreducible
Whittaker modules for t. These modules are not Z-graded as t-modules. All my results are
also valid for any finite-dimensional Heisenberg algebra with some minor modifications in
the definitions. From the Whittaker t-modules of level one, I obtain irreducible Whittaker
modules for Weyl algebras.

In my dissertation and in [12] I also study the irreducible Whittaker modules for the Lie
algebra t̃ obtained by extending t by a degree derivation d. The central element c of t̃ again
acts by a scalar (denoted by a and called the level) on any irreducible t̃-module. I show that
for any a ∈ C and any algebra homomorphism η : U (̃t+) → C such that η|et+ 6= 0 and η|ti 6= 0
for infinitely many i ∈ Z>0 if a 6= 0, there exists a unique (up to isomorphism) irreducible

Whittaker t̃-module L̃η,a of type η and level a.

1.3. Imaginary Whittaker Modules for Affine Lie Algebras. Loop modules for an
affine Lie algebra g are modules induced over a parabolic subalgebra of g with Levi factor
l = t + h, where t is an infinite-dimensional Heisenberg subalgebra, and h is a Cartan
subalgebra of g, starting from irreducible Z-graded t-modules. The central element of g
then acts as a scalar called the level of the module. Integrable loop modules of level zero
were studied in [7, 8, 9, 10], but arbitrary loop modules of level zero are still not completely
classified. Loop modules of non-zero level are also called imaginary Verma modules, and they
were studied in [16]. Analogues of imaginary Verma modules have also been constructed for
the quantum group Uq(g) of a non-twisted affine Lie algebra g in [18], and for the extended
affine Lie algebra sl2(Cq) in [13].

In my thesis and in [12] I use my results from Section 1.2 to construct a new class of
modules for non-twisted affine Lie algebras, which I call imaginary Whittaker modules, as
they are constructed by inducing over the same parabolic subalgebra as the imaginary Verma
modules or loop modules, but with the root vectors corresponding to the positive imaginary
roots acting in a non-zero fashion. More specifically, let ġ be a finite-dimensional complex
simple Lie algebra, and fix a triangular decomposition ġ = ṅ−⊕ ḣ⊕ ṅ+ of ġ, where ḣ ⊆ ġ is a
Cartan subalgebra. Let g be the non-twisted affine Lie algebra associated with ġ. Therefore
g = (ġ ⊗C C[t, t−1]) ⊕ Cc ⊕ Cd, where the element c is central and d is a derivation. Set

t̃ = (ḣ ⊗ tC[t]) ⊕ (ḣ ⊗ t−1C[t−1]) ⊕ Cc ⊕ Cd. The subalgebra t̃ motivated the definitions in
Section 1.2, and so one can apply all the results on Whittaker modules from Section 1.2 to
t̃. Set n+ = ṅ+ ⊗ C[t, t−1] and p = (̃t⊕ ḣ)⊕ n+. The subalgebra p is a parabolic subalgebra

of g and it contains the infinite-dimensional Heisenberg algebra t. Let λ ∈ (ḣ ⊕ Cc)∗. Set

t̃+ = ḣ⊗ tC[t], and let η : U (̃t+) → C be an algebra homomorphism such that η|et+ 6= 0 and

η|ti 6= 0 for infinitely many i ∈ Z>0 if λ(c) 6= 0, where now ti = ḣ⊗ ti for i 6= 0. View L̃η,λ(c)

as a U(p)-module by letting hw = λ(h)w for all w ∈ L̃η,λ(c), h ∈ ḣ⊕Cc, and n+ act trivially

on L̃η,λ(c). Set Vη, λ = U(g)⊗U(p) L̃η,λ(c). The g-module Vη,λ is called an imaginary Whittaker
module of type (η, λ) for g. My main result is the following:

Theorem 2. [11, 12] Let g = (ġ ⊗ C[t, t−1]) ⊕ Cc ⊕ Cd be a non-twisted affine Lie algebra

and let λ ∈ (ḣ⊕ Cc)∗.
(i) If λ(c) 6= 0, then the imaginary Whittaker module Vη,λ is irreducible as a U(g)-module.
(ii) If λ(c) = 0, then Vη,λ has a unique irreducible quotient Lη,λ.

Theorem 2(i) is an analogue of a similar result for imaginary Verma modules [17, Prop.
5.8].
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1.4. Directions for Further Work. My dissertation is a first attempt to develop a theory
of Whittaker modules for affine Lie algebras. Several natural problems arise from this work

for future investigation. Theorem 1 classifies certain irreducible Whittaker modules for ŝl2.
In the future, I hope to describe the irreducible Whittaker modules for η non-zero on all
generators of n+ in the affine case and thus completely classify all irreducible Whittaker

modules for ŝl2. I also hope to investigate whether Theorem 1 can be carried over to other
affine Lie algebras, and to classify the irreducible Whittaker modules for arbitrary affine
g. One interesting question is what are the annihilator ideals in the enveloping algebra of
an arbitrary affine g of the irreducible Whittaker modules L(W ) described in Section 1.1.
Another direction would be to study analogous modules for loop algebras and the Virasoro
algebra.

I also hope to construct analogues of the imaginary Whittaker modules for twisted affine
Lie algebras and other infinite-dimensional Lie algebras, for example, extended affine Lie
algebras, and describe the submodule structure and irreducible quotients of the imaginary
Whittaker modules of level zero.

In [31, 32], M. Ondrus classified Whittaker modules for the quantum enveloping algebra
Uq(sl2) of sl2, and studied their tensor products with finite-dimensional modules for Uq(sl2).
However, the quantum Serre relations used to define the enveloping algebra Uq(g) of a finite-
dimensional complex semisimple Lie algebra g imply that if U+ is the subalgebra of Uq(g)
analogous to U(n+) and η : U+ → C is an algebra homomorphism, then η has to vanish on
at least one of the generators of U+ if g 6= sl2. In [34], A. Sevostyanov showed that η(eα) 6= 0
for all α ∈ π is possible; however, his result was for a different quantum algebra, namely
the topological Hopf algebra Uh(g) over C[[h]]. It would be interesting in both the finite-
dimensional, and the affine case to examine conditions under which Whittaker and imaginary
Whittaker modules can be deformed to representations of the corresponding quantum group.

2. n-point Affine Lie Algebras

In ongoing joint work with Michael Lau, we are studying bosonic and fermionic repre-
sentations for n-point affine Lie algebras. Let ġ be a finite-dimensional complex simple Lie
algebra. Since the ring C[t, t−1] of Laurent polynomials is the ring of rational functions on
the Reimann sphere C ∪ {∞} with poles allowed only in {∞, 0}, there is a natural general-
ization of the loop algebra construction ġ⊗CC[t, t−1], by considering any algebraic curve L of
genus g with a fixed subset P of n distinct points, and the ring R of meromorphic functions
on L with poles allowed only in P , and forming the infinite-dimensional Lie algebra ġ⊗C R.

Central extensions are obtained by enlarging the center of the original infinite-dimensional
Lie algebras and they are an important tool in representation theory, as they enrich the collec-
tion of available representations. In the case of genus 0, M. Bremner [4] determined the uni-
versal central extension of the loop algebra ġ⊗CR, where R = C[t, (t−a1)

−1, . . . , (t−an−1)
−1]

with ai ∈ C, and showed that the center has dimension n − 1. The Lie algebras obtained
in this way are called n-point affine Lie algebras. In [1], G. Benkart and P. Terwilliger re-
alized the three-point sl2 loop algebra as the tetrahedron algebra given in [19], and gave a
presentation by generators and relations of its universal central extension.

Fock space is a vector space spanned by monomials corresponding to the possible energy
states of particles in some physical system. It is called bosonic or fermionic according to
the occupancy statistics that the particles satisfy. Various Lie algebras have natural actions
on Fock spaces, called bosonic or fermionic representations. For affine Lie algebras, these
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include the oscillator/spinor representations [14, 21], as well as the vertex operator represen-
tations first given by J. Lepowsky and R. L. Wilson in [27]. In [26], M. Lau gave a uniform
construction of bosonic and fermionic modules for a one-dimensional central extension g̃ of
any Lie algebra g over a field of characteristic 0. Fermionic representations for the two-point
affine Krichever-Novikov algebras were described in [36]. Bosonic realizations of the four-
point sl2 loop algebra have been obtained by B. Cox in [6]. We have constructed a fermionic
realization of this Lie algebra and in the future we hope to generalize our construction to
the n-point case. We are also interested in studying connections with vertex operators and
combinatorial identities.
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