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This research statement is divided into three sections. First we discuss Ehrhart theory for

lattice polytopes, some open questions, and results in these directions. After this, we look at the

generalization of the theory to rational polytopes, see how such polytopes arise naturally, and note

how problems increase in complexity while still remaining tractable. Lastly we discuss how, even

though the techniques needed are often highly technical and advanced, there are plenty of questions

that are accessible to those with undergraduate mathematics backgrounds. Some questions are

presented as examples.

1. Ehrhart Theory and Reflexive Polytopes

Let P ⊆ Rn be a lattice polytope of dimension d, that is, the convex hull of a finite number

of vectors in Zn whose affine span has dimension d. Consider the counting function LP(m) =

|mP ∩ Zn|, where mP is the m-th dilate of P. The Ehrhart series of P is

EP(t) := 1 +
∑

m∈Z≥1

LP(m)tm .

Combining two well-known theorems due to Ehrhart [13] and Stanley [28], there exist values

h∗0, . . . , h
∗
d ∈ Z≥0 with h∗0 = 1 such that

EP(t) =

∑d
j=0 h

∗
j t

j

(1− t)d+1
.

We say the polynomial h∗P(t) :=
∑d

j=0 h
∗
j t

j is the h∗-polynomial of P (sometimes referred to as

the δ-polynomial of P) and the vector of coefficients h∗(P) is the h∗-vector of P. That EP(t) is

of this rational form is equivalent to |mP ∩ Zn| being a polynomial in m of degree at most d; the

non-negativity of the h∗-vector is an even stronger property.

Recent work has focused on determining when h∗(P) is unimodal, that is, when there exists some

k for which h∗0 ≤ · · · ≤ h∗k ≥ · · · ≥ h∗d. The specific sequence in question may not be of particular

interest, but unimodal behavior may suggest an underlying structure of P that is not immediately

apparent. Thus, the proofs of various h∗-vectors being unimodal are often more enlightening than

the sequences themselves. There are a number of approaches possible for proving unimodality,

taken from fields such as Lie theory, probability, and others [29], but it is generally very difficult to

prove.

Even for highly structured polytopes, unimodality can be difficult to show. Such a class is the

following.

Definition 1.1. A lattice polytope P is called reflexive if 0 ∈ P◦ and its (polar) dual

P∆ := {y ∈ Rn : x · y ≤ 1 for all x ∈ P}
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is also a lattice polytope.

Reflexive polytopes have been the subject of a large amount of recent research [3, 4, 7, 8, 15, 18,

22, 24]. It is known from work of Lagarias and Ziegler [20] that there are only finitely many reflexive

polytopes (up to unimodular equivalence) in each dimension, with one reflexive in dimension one,

16 in dimension two, 4 319 in dimension three, and 473 800 776 in dimension four according to

computations by Kreuzer and Skarke [19]. The number of five-and-higher-dimensional reflexives is

unknown. One of the reasons reflexives are of interest is the following.

Theorem 1.2 (Hibi, [18]). A d-dimensional lattice polytope P ⊂ Rd containing the origin in its

interior is reflexive if and only if h∗(P) satisfies h∗i = h∗d−i.

Hibi [17] conjectured that every reflexive polytope has a unimodal h∗-vector. Counterexamples

to this were found in dimensions 6 and higher by Mustaţǎ and Payne [22, 24]. However, Hibi and

Ohsugi [23] also asked whether or not every normal reflexive polytope has a unimodal h∗-vector; a

related notion is that of an integrally closed polytope.

Definition 1.3. A lattice polytope P ⊆ Rn is integrally closed if, for every x ∈ mP ∩ Zn, there

exist x1, . . . , xm ∈ P ∩ Zn such that x = x1 + · · ·+ xm.

While the terms integrally closed and normal are often used interchangeably, these are not

synonymous [14]. A first step to understanding unimodality with all of these restrictions is to first

ask about unimodality in the simplicial case. This leads to the following question.

Question 1.4. Is the h∗-vector of an integrally closed, reflexive simplex unimodal?

A priori there is no indication that this should be true. Fortunately there is a classification

algorithm for reflexive simplices [11] that associates a type (Q,λ) to each, which might be extremely

helpful for answering Question 1.4. Since there is still a large number of simplices to work through,

we would like to avoid redundancy when searching through them. Braun and I investigated a

method of constructing polytopes that, with appropriate restrictions, preserves properties that one

may be interested in.

Construction 1.5. Suppose P ⊆ Rn and Q ⊆ Rm are full-dimensional polytopes with 0 ∈ P and

{v0, . . . , vk} denoting the vertices of Q. Then for each i = 0, 1, . . . , k there is a polytope P ∗i Q
defined by

P ∗i Q := conv{(P × 0m) ∪ (0n ×Q− vi)} ⊆ Rn+m.

Given the types of P and Q, computing the type of P ∗iQ is simple. As we will see, this ability

to compute types of reflexive simplices is helpful in directing approaches to Question 1.4.

Theorem 1.6 (Braun and Davis, 2014). If P = conv{v0, . . . , vn} ⊆ Rn andQ = conv{w0, . . . , wm} ⊆
Rm are full-dimensional reflexive simplices of types ((p0, . . . , pn), λ) and ((q0, . . . , qm), µ), respec-

tively, then P ∗i Q is a reflexive simplex of type(
1

d
(qip0, qip1, . . . , qipn, sq0, sq1, . . . , ŝqi, . . . , sqm), d

)
,

where s =
∑n

j=0 pj and d = gcd(qi,
∑n

j=0 pj).
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Of course, the construction itself can be done with any two polytopes, as long as 0 ∈ P. We can

get more some mileage out of the construction in the following ways.

Theorem 1.7 (see [9]). Suppose P ⊆ Rn and Q ⊆ Rm are full-dimensional polytopes with 0 ∈ P
and {v0, . . . , vk} denoting the vertices of Q. Then for each i = 0, 1, . . . , k the polytope formed by

P ∗i Q := conv{(P × 0m) ∪ (0n ×Q− vi)} ⊆ Rn+m

is a free sum. Moreover, if 0 ∈ P◦ and P and Q are both reflexive, then P ∗i Q is also reflexive.

Theorem 1.8 (Braun and Davis, 2014). If P and Q are any integrally closed polytopes with 0 ∈ P◦

and P reflexive, then P ∗i Q is integrally closed.

These theorems together provide a way to produce new h∗-vectors from old.

Theorem 1.9 (see [5, 9]). Let P ⊆ Rn and Q ⊆ Rm be lattice polytopes with 0 ∈ P◦. Then

(1) their h∗-polynomials multiply, i.e.

h∗P∗iQ(t) = h∗P(t)h∗Q(t),

(2) if P and Q are both simplices, then so is P ∗i Q, and

(3) if P and Q are both integrally closed and reflexive, then so is P ∗i Q.

So, in the context of Question 1.4, if h∗(P) and h∗(Q) are unimodal, then so is h∗(P ∗iQ). Thus if

we want to search for a counterexample to Question 1.4, we want to rule out any that decompose

as two smaller-dimensional simplices satisfying the conditions of the previous theorem. Although

this helps to reduce the number of simplices to sort through, the question is still wide open.

An approach using representation theory can be useful to Ehrhart theory problems in this area,

adapting methods used in [25].

Theorem 1.10 (see [25]). If a reflexive simplex P “carries” a representation of sl2(C), then h∗(P)

is unimodal.

This perspective is rather unexplored, which leaves a lot of questions to ask.

Question 1.11. Which reflexive simplices carry a representation of sl2(C)? Can nontrivial classes

of reflexive simplices be constructed that either do or do not carry such a representation? How can

this be related to the type of a reflexive simplex?

Determining whether a representation is carried is equivalent to determining the existence of

linear operators satisfying certain equalities. Doing this in general can be challenging, but examples

in lower dimensions may give hints to any larger structure, since the number of lattice points

involved can be kept low. I will start by looking at these lower-dimensional simplices to collect data,

and I will examine how different constructions of free sums affect the existence of a representation

of sl2(C). Another approach comes from commutative algebra: for a lattice simplex P ⊆ Rn with

vertices {v0, . . . , vn}, let

Π(P) :=

{
n∑

i=0

civi

∣∣∣0 ≤ ci < 1

}
.
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The set of lattice points in Π(P) correspond to the zero-dimensional graded algebra

k[Π(P)] := k[xazm ∈ Rn+1|x ∈ mP ∩ Zn]/(xv0z, . . . , xvnz),

where xa := xa11 x
a2
2 · · ·xann . Through the work of Harima et al. [16], one can show that the h∗-vector

of P is unimodal if and only if k[Π(P)] has a weak Lefschetz element. Experimental data suggests

that a weak Lefschetz element can be found much of the time, however they do not necessarily have

to exist [9]. What are also not clear are the conditions necessary or sufficient for a weak Lefschetz

element to exist.

Question 1.12. For which reflexive simplices P do k[Π(P)] have a weak Lefschetz element? What

do the weak Lefschetz elements look like? Is there a way to relate weak Lefschetz elements induced

from two polytopes in a free sum?

Again, low-dimensional examples will be helpful here in experimenting with whether or not weak

Lefschetz elements exist. There may be multiple such elements, in which case it would be helpful

to determine when a polytope P induces exactly one weak Lefschetz element of a particular form,

say, by taking the sum of all degree-one elements of Π(P). Identifying polytopes that induce a

single weak Lefschetz element may make it easier to predict the form of an element when taking

free sums. This is another approach with a lot of room for exploration. For this work, I will

expand upon computer code that I have already written for identifying whether or not a particular

reflexive simplex has a weak Lefschetz element. This will make approaching the problem much

more efficient.

2. Rational Ehrhart Theory

It is natural to also ask about lattice points contained in scalings of polytopes whose vertices are

in Qn rather than strictly Zn. In this case, the function LP(m) is a quasipolynomial, and there are

variations in the rational form of EP(t). Rational polytopes arise in many settings, one of which is

a variation of the well-known Birkhoff polytope.

Definition 2.1. The Birkhoff polytope is the set of n × n matrices with real nonnegative entries

such that each row and column sum is 1.

We denote this polytope by Bn and note that it is also often referred to as the polytope of real

n × n doubly-stochastic matrices or the polytope of n × n magic squares. The fact that Bn is a

polytope is due to the Birkhoff-von Neumann theorem, which finds that Bn is the convex hull of

the permutation matrices. The h∗-vector of the Birkhoff polytope is difficult to compute in general,

and is known only for n ≤ 9; its volume only for n ≤ 10 [6]. As limited as the data is, it has still

been shown that h∗(Bn) is symmetric as well as unimodal [2, 26, 27].

On the other hand, little is known about the polytope Σn obtained by intersecting Bn with the

hyperplanes xij = xji for all i, j, that is, by requiring the matrices in Bn to be symmetric. Nothing

is new when n ≤ 2, but complications arise once n ≥ 3 since the vertices of Σn are no longer always

integral. They are contained in the set

Ln =

{
1

2
(P + P T )|P ∈ Rn×n is a permutation matrix

}
,
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but Ln is not necessarily equal to the vertices of Σn. A description of the vertices and a generating

function for the number of them can be found in [31]. The h∗-vector of Σn is known to be symmetric

[30] and some values of EΣn(t) have been computed in a reduced form for small n [32], but it is

still unknown whether the h∗-vector is always unimodal in this case.

Since there are so many more tools available for lattice polytopes, one strategy is to consider a

related lattice polytope and see what information is retained about the rational one. One way to

do this is to scale Σn by two, resulting in a polytope that is combinatorially equivalent to Σn but

with integral vertices. We denote this dilation by Sn. Starting from this simple alteration I have

been able to show the following.

Theorem 2.2 (see [12]). Let Σn and Sn be as above. If n = 2k for some k ∈ Z>0, then

(1) h∗(Σn) = (h∗0, h
∗
1, . . . , h

∗
2d) for d = 2k2 − 2k + 1, and

(2) h∗(Sn) = (h∗0, h
∗
2, . . . , h

∗
2d−2, h

∗
2d) is unimodal.

This partial progress leads to a few natural questions:

Question 2.3.

(1) When n is even, how can we approach the odd-index terms for h∗(Σn)?

(2) In general, how do we prove unimodality of an h∗-vector without also having symmetry?

As shown in [12], each lattice point of Sn has a corresponding pseudograph. Theorem 2.2 is

related to the integral closure of Sn, which can be interpreted as a certain way of decomposing the

corresponding graphs. However, Σn is not integrally closed. The odd-index terms may be related

to the “irreducible” pseuographs, in which case these are worth examining. Very little is known

about such graphs, so I plan to continue this work by asking how many there are for fixed n. I

expect these pseudographs to have certain structure that is reflected as the odd-index entries. This

may also give some insight into the behavior of h∗-vectors for odd n, when h∗(Sn) is not symmetric.

The proof of Theorem 2.2 relies on showing that a (regular) unimodular triangulation of Sn exists.

If the triangulation is explicitly known, then the Ehrhart series can be recovered through knowing

the Ehrhart series of simplices and using inclusion-exclusion on the elements of the triangulation.

Unfortunately, concrete descriptions of the triangulations are not entirely clear, which leaves the

unimodality question open. A more general question is the following.

Question 2.4. Given an h∗-vector (h∗0, . . . , h
∗
d), what is the combinatorial interpretation (if any)

of h∗i ?

It has been shown for any lattice polytope P ⊆ Rn that h∗0 = 1, h∗1 = |P ∩ Zn| − dimP − 1, and

if h∗s is the highest-index nonzero entry of h∗(P), then s is the smallest integer factor for which sP
contains an interior lattice point and dimP − h∗s + 1 is the number of lattice points in the interior

of sP. There are additional results for other special cases, but the question is likely unanswerable

in full generality.

The idea of forming new polytopes from the lattice points of a rational polytope was also men-

tioned in a discussion of Gelfand-Tsetlin polytopes by Alexandersson [1]. Gelfand-Tsetlin polytopes

are defined from arrays of real numbers satisfying certain inequalities, and are not necessarily lattice

polytopes. Nonetheless, their Ehrhart counting functions can still be true polynomials instead of



6 ROBERT DAVIS

quasipolynomials [21]. Aside from their combinatorial interest, Gelfand-Tsetlin polytopes are im-

portant for their connections to representations of glnC. Little is known about the Ehrhart theory

of Gelfand-Tsetlin polytopes, as evidenced by the multiple open questions mentioned in [1], one of

which is the following.

Question 2.5. For each degree d, is there a finite number of Ehrhart polynomials of degree d that

can be obtained as an Ehrhart polynomial of some Gelfand-Tsetlin polytope?

For this question, I will look at simple Gelfand-Tsetlin polytopes and determine which lattice

polytopes have the same Ehrhart polynomials. Lattice polytopes are understood much better, so I

will work to identify an infinite class of lattice polytopes whose h∗-vectors coincide with a particular

infinite class of Gelfand-Testlin polytopes. I will then experiment with the lattice polytopes to

examine any common behaviors with the Gelfand-Tsetlin polytopes.

3. Research Mentoring

There is an abundance of work that can be done from an Ehrhart theoretic perspective that does

not necessarily require an extensive knowledge of the field. For example, two of my coauthors in

[10] were undergraduates at the time while I had only taken a single combinatorics course in my

life up to that point. The questions we examined were accessible to students with a fairly limited

combinatorics background, but answering them was still challenging. In my future work I intend

to continue such a tradition of exposing students to research-level mathematics at an early stage.

There are many ways to connect Ehrhart theory with other areas of combinatorics: polytopes

arise in different ways using graphs, partially ordered sets, compositions and partitions, and others.

These are objects that are easily accessible to undergraduates, and questions are easy to produce.

For example, the edge polytope of a graph does not require knowing anything about graphs beyond

the most basic definitions. From here, we could restrict our attention to certain classes of graphs

and look for common properties of their edge polytopes; in the other direction, we could ask what

graphs are produced if we require an edge polytope to have additional structure.
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