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1. Introduction

The goal will be to “construct” a homotopy theory in the context of smooth schemes over
a given base field k in which the affine line A

1
k plays the role of the unit interval.

2. Crash Course in Algebraic Geometry

The following “dictionary” will give us the necessary intuition:

Algebraic Geometry Topology
A
n
k R

n

Affine Scheme Variety in R
n

Scheme Manifold
Separated Scheme Hausdorff

Proper Scheme Compact
Smooth scheme Smooth Manifold

Smooth morphism of rel. dim. n Submersion of codim n
étale morphism (smooth of rel. dim. 0) Local homeomorphism

3. Foundations

By now we have been sufficiently brainwashed so that when we hear “homotopy theory” we
think of model categories. These days, a model category is usually required to be complete
and cocomplete, so that one can do things like the small abject argument in order to build
things functorially. Of course, Smk is not complete and cocomplete. To fix this, we just
consider instead the category of formal colimits in Smk. To be more precise, recall

Definition 1. A presheaf F on a category C is simply a contravariant functor
F : C op → Set. We will denote the category of presheaves on C by Pre(C ).

Example 1. Given any X ∈ C , we have the presheaf hX defined by

hX(Y ) = HomC (Y,X).

We will also need the following trivial, but fundamental, fact:

Proposition 1 (Yoneda’s Lemma). Given any presheaf F on C , there is a natural isomor-
phism

HomPre(C )(hX ,F) = Nat(hX ,F) ∼= F(X).
In particular, HomPre(C )(hX , hY ) ∼= HomC (X,Y ).

So now we may embed Smk into the category Pre(Smk) of presheaves on Smk via the
Yoneda embedding h. By abuse of notation, if X ∈ Smk, we will also write X for the
corresponding represented presheaf on Smk.
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The category Pre(Smk) is complete and cocomplete (limits and colimits are simply com-
puted objectwise). In fact, it is a universal cocompletion of Smk, in the following sense:

Proposition 2. If F : Smk → D is any functor to a cocomplete category D , then there is
a unique colimit-preserving functor F̃ : Pre(Smk)→ D such that the diagram

Smk
h //

F
%%KKKKKKKKKKK Pre(Smk)

∃!F̃
���
�
�

D

commutes. Moreover, F̃ has a right adjoint G : D → Pre(Smk) given by

G(d)(X) = HomD(F (X), d).

The key fact here is that every presheaf is canonically isomorphic to a colimit of repre-
sentable presheaves. Since F̃ is already determined by F on the representable presheaves,
there is no choice left for defining F̃ on an arbitrary presheaf. Again, one should think of
the Yoneda embedding as the process of formally adjoining colimits to a given category.

At this point, we feel pretty good about embedding Smk inside Pre(Smk). Nevertheless,
we run into a problem. Namely, suppose that we have a Zariski cover X = U ∪ V . In other
words, we have a pushout diagram

U ×X V //

��

U

��
V // X

in Smk. Unfortunately, the corresponding diagram in Pre(Smk) is no longer a pushout.
Indeed, the identity map of X, considered as an element of X(X), does not show up in the
pushout U(X)∪U∩V (X) V (X). Morally, we have formally adjoined colimits, but we already
had some colimits to begin with, and we want to define the old colimits with ones in our
new category. The solution of this problem is the passage to sheaves.

The idea is the following: we want, for example, the canonical map

(1) U ∪U∩V V → X

in Pre(Smk) to be an isomorphism. We can consider it as an isomorphism by restricting
our attention to those presheaves which believe this map to be an isomorphism1. A Zariski
sheaf is exactly a presheaf which believes every natural transformation of the form (1) to
be an isomorphism.

In fact, Zariski covers won’t quite work for us. Moreover, we would like to talk about
sheaves on an arbitrary category, and so we will have to specify what we mean by a cover
in a category.

Definition 2. A Grothendieck (pre-)topology on a category C with fiber products is, for
each object X ∈ C , a collection of families {Uα → X} of morphisms, called covering families,
which satisfy the following properties:

(i) any isomorphism constitutes a covering family

(ii) if {Uα → X} is a covering family and Y
f−→ X is any morphism, then {Uα×XY →

Y } is also a covering family

1This process should be familiar from our earlier discussions of localization of a category with respect to
a set of maps. Sheaves are merely the local objects with respect to the set of covering morphisms.
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(iii) if {Uα → X} is a cover and, for each α, {Vαβ → Uα} is a cover, then {Vαβ → X}
is a cover.

Example 2. In the Zariski topology on Smk, a cover {Uα → X} is given by a finite,
surjective family of open immersions.

Example 3. In the Nisnevich topology on Smk, a cover {Uα → X} is given by a finite,
surjective family of étale morphisms such that for each x ∈ X, there exists a u ∈ Uα such
that k(x)

∼=−→ k(u).

Definition 3. If C is a category with a given Grothendieck pre-topology, we
say that a presheaf F on C is a sheaf (with respect to the given topology),
if for every X ∈ C and every cover {Ui → X}i∈I of X, the canonical map

F(X) // eq
(∏
i∈I
F(Ui)

//
//
∏
i,j∈I
F(Ui ×X Uj)

)
is an isomorphism.

In particular, we will be interested in Nisnevich sheaves. It turns out that there is a
particularly nice characterization of Nisnevich sheaves. First we need a definition.

Definition 4. A pullback square
U ×X V //

��

V

p

��
U

i // X
is said to be elementary distinguished if i is an open immersion and p is étale and induces
an isomorphism

p−1(X − U)red
∼=→ (X − U)red

of closed subschemes.

Proposition 3. A presheaf F is a Nisnevich sheaf if and only if it takes elementary dis-
tinguished squares to pullback squares of sets.

Corollary 1. Every representable presheaf is a Nisnevich sheaf.

Proof. Indeed, an elementary distinguished square is a pushout square in Smk. �

Corollary 2. Every elementary distinguished square is a pushout square of Nisnevich
sheaves.

3.1. Building in the simplicial structure
Now we have our category of Nisnevich sheaves, which is complete and cocomplete, but
we are still not ready to do homotopy theory. As above, we will “cheat” by embedding
our category of sheaves inside a category which has an obvious homotopy theory. Namely,
consider

d : ShvNis(Smk) ↪→ sShvNis(Smk);
that is, we send a sheaf F to the discrete simplicial sheaf F . One can then put a model
structure on the category of simplicial sheaves; in fact there are many choices.

It will be more convenient for us to work at the level of presheaves. Note that we can either
regard a simplicial presheaf as a presheaf of simplicial sets or as a simplicial object in the
category of presheaves (of sets). There are in fact several model structures on the category of
simplicial presheaves. We will work with the projective, or Bousfield-Kan model structure.
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The weak equivalences and fibrations in this model structure are just the objectwise weak
equivalences and fibrations. In other words, a map F → G of simplicial presheaves is a weak
equivalence (or fibration) if and only if F(U)→ G(U) is a weak equivalence (or fibration) of
simplicial sets for all U . This determines the cofibrations to be those with the appropriate
lifting property. This model category enjoys a similar universal property to that discussed
above for Pre(Smk):

Proposition 4 (Dugger). Given a functor F : Smk →M to a model category M , there is a
left Quillen functor F̃ : sPre(Smk)→M and a natural weak equivalence η : F̃ ◦ (c◦h) ' F :

Smk
c◦h //

F &&LLLLLLLLLLL sPre(Smk)

∃F̃
���
�
�

M

commutes. Moreover, the category of extensions F̃ is contractible (in a sense made more
precise by Dugger).

At least if M is simplicial, it is not difficult to describe what to do: we know how we have
to define F̃ on simplicially constant presheaves. We then extend to an arbitrary simplicial
presheaf by use of a coend:

F̃ (G) = (F ⊗∆•)⊗Smk
G.

One should regard the process of passage from Smk to sPre(Smk) as formally adjoining all
homotopy colimits.

As above, we may have diagrams in Smk which we wanted to regard as colimits, and we
now want to identify these with appropriate homotopy colimits. In particular, given any
Nisnevich cover U = {Ui → X}i∈I , we can form the associated Čech simplicial presheaf U•,
given in dimension n by

Un =
∐

i0,...,in∈I
Ui0 ×X Ui1 ×X · · · ×X Uin .

We then perform Bousfield localization at the maps hocolimU• → X. In fact, since Nis-
nevich sheaves are detected on the elementary distinguished squares, it suffices to localize
at those particular covers. Let us denote our resulting homotopy category by Ho(k).

4. The A
1-homotopy category

As we said at the beginning, we want the affine line A
1
k to play the role of the unit interval

in our homotopy theory. In particular, the projection X × A
1
k → X should be a weak

equivalence. But of course we know how to force this to be true: we can just localize
at all such projections. The A

1 model structure on simplicial presheaves is the Bousfield
localization of our previous model structure at the maps X × A

1 → X. The resulting
homotopy category will be denoted by Ho

A1(k).
Note that by construction X × A

1
k is a cylinder object for X in this model structure.

As in the classical case, one often wants to work with pointed spaces. A pointed simplicial
presheaf is simply a simplicial presheaf F together with a morphism ∗ → F , where ∗ is the
discrete simplicial presheaf represented by ∗ = Spec(k).

We now inherit a model structure on pointed simplicial presheaves by declaring a map
of pointed simplicial presheaves to be a weak equivalence, fibration, or cofibration if it
already is when forgetting about basepoints. We denote the associated homotopy category
by Ho

A1,•(k).
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5. Constructions

Many constructions from classical homotopy theory carry over in this situation.
For n ≥ 0, define

∆n = Spec(k[t0, . . . , tn]/(
∑
i

ti = 1)) ⊂ A
n+1
k .

Just as in the classical case, as n varies this yields a cosimplicial object in Smk. This allows
us to define a ”chains” functor C• : Pre(Smk) → sPre(Smk) by C•(F) = Hom(∆•,F).
Recall that the internal hom of presheaves is defined as

Hom(∆•,F)(U) = F(U ×∆•) = Hom(U ×∆•,F).

Now we can use our cosimplicial scheme ∆• to build a left adjoint to C•. Namely, the left
adjoint is geometric realization, and it is defined, like in the classical case, as a coend

|F•| = ∆• ⊗∆ F•.
One can in fact use this adjoint pair to transport the model structure on sPre(Smk) to one
on Pre(Smk).

Moreover, one can show that if F is a simplicial presheaf then F ' |F|, where the
geometric realization is considered as a discrete simplicial presheaf. In particular, |∆n| ' A

n.

There are a couple of candidates for ”spheres” in our homotopy category. First, the
simplicial circle S1

s = ∆1/∂∆1, considered as constant in the presheaf direction, is an
obvious choice. Second, at least if we are working over C, then A

1 − 0 = Spec(k[t, t−1])
should at least have the homotopy type of a circle; it’s the best we can do for a general
field k. This scheme is also known by the name of Gm, as it is a group scheme under
multiplication. We will see another candidate soon.

Given two pointed (simplicial) presheaves (X,x) and (Y, y), we define their smash product
to be

X ∧ Y = X × Y/((X × {y}) ∪ ({x} × Y )).
Given a vector bundle E → X, we define the Thom space Th(E) to be the quotient

presheaf E/E − s(X), where s : X → E is the zero section. We emphasize that this is a
quotient of presheaves. We define the Tate object T to be the Thom space of the trivial
line bundle over a point:

T = Th(A1 → pt) = A
1/(A1 − 0).

Note that, in topology, the Thom space of a trivial line bundle gives a circle. In fact, our
three candidate circles are related in the following way:

Proposition 5. S1
s ∧Gm ' T ' P

1.

Proof. Let X be the pushout
Gm

//

1×id
��

A
1

��
A

1 ∧Gm
// X

Since A
1 ∧ Gm ' ∗, we get a weak equivalence X ' T . Similarly, since A

1 ' ∗, we get a
weak equivalence X ' A

1 ∧Gm/Gm = A
1/{0, 1} ∧Gm ' S1

s ∧Gm. We have here used the
fact that any simplicial presheaf is weakly equivalent to its geometric realization (discussed
below).
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Also, note that open excision gives

T = A
1/(A1 − 0) ∼= P

1/(P1 − 0) ' P
1/∗ ∼= P

1.

�

Remark 1. Over the reals, P
1 gives a circle; with the above proposition this supports T ’s

claim to being a circle. On the other hand, over C, P
1 gives a 2-sphere, which supports the

claim that S1
s and Gm are circles.

When working with Thom spaces it is in fact more convenient to sheafify, as the next
proposition shows (the proposition fails before sheafification)

Proposition 6. Th(E ×E′) ∼= Th(E) ∧ Th(E′) (as sheaves).

In particular, when E′ is a trivial line bundle, we get Th(E × O) ∼= Th(E) ∧ T . This
of course implies Th(E × On) ∼= Th(E) ∧ Tn. Taking E to be the zero bundle gives in
particular

A
n/(An − 0) ∼= Tn.

The following theorem is one place where the use of a topology at least as strong as the
Nisnevich topology is required.

Theorem 1. (Homotopy Purity) Let i : Z ↪→ X be a closed immersion of smooth schemes,
with normal bundle NXZ. Then Th(NXZ) is A

1-weak equivalent to X/(X − Z).


