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Introduction

The Adams spectral sequence is one of the most important tools in stable homotopy theory. It allows one
to pass from homological information to “homotopical” information (whatever that means). In principle, it
somehow streamlines and enhances the Serre spectral sequence computations of homotopy groups of spheres.
Unlike Serre spectral sequence, Adams spectral sequence deals with stable homotopy groups only. To em-
phasize this, I will commit to working with spectra throughout the lecture. In addition to this, I will expand
to define the Adams spectral sequence for some generalized cohomology theory, E, where E, of course, refers
to both the cohomology theory and the spectrum representing it. There are hypotheses that we are going to
impose on our cohomology theories, which may seem a bit restrictive. However, they are not as bad, in light
of the fact that the theories of interest to us mostly adhere to them (maybe after some modifications).

I will mainly be concerned by the construction of the spectral sequence. Therefore, let the scarcity (or
maybe complete lack) of examples not discourage the audience. The approach is that of Haynes Miller’s in
[HRM]. It is referenced in [COCTALOS], which I am going to shamelessly copy here. The nice thing about
the approach is the fact that it mimics the homological algebra, that we all have learned to love. Without
further ado (I’ve already spent enough time with this introduction), let us begin.

1. Definitions

I will assume that people know about spectra, their relation to (co)homology theories, and smash products
of spectra. Most of the information is in [ABB].

Definition 1.1. (i) A sequence of spectra A1 A2 . . . An is exact if the sequence of ho-
motopy functors it represents is exact.

(ii) A map A B is a monomorphism if ∗ A B is exact.

(iii) A map A B is a epimorphism if A B ∗ is exact.

(iv) A sequence A B C is short exact if ∗ A B C ∗ is exact.

Remark 1.2. Here the homotopy functor that represents A is the functor [A,−] (and not [−, A]). In
particular, we can conclude that any cofiber sequence is exact. These two notions in some sense are very
closely related.

The monomorphisms and epimorphisms end up being actually quite simple.

Lemma 1.3. If f : A B is a mono, then there is a map g : C B, such that f ∨ g : A∨C B

is a weak equivalence. If g : A B is epi, then there is a homotopy section r : B A, i.e. gr ' 1, and

a map f : F A, such that r ∨ f : B ∨ F A is a weak equivalence.

Proof. Note that [ΣE,−] ∼= [E,Σ−1−], which implies that Σ preserves the exactness of sequences of
spectra. Then we look at the following cofiber sequence of spectra

A B C ΣA ΣB
f r ∂ −Σf

Note that −Σf is mono. Then we have an exact sequence

[C,ΣA] [ΣA,ΣA] [ΣB,ΣA]
∂∗ (−Σf)∗

(−Σf)∗ is surjective, forcing ∂∗ = 0. Thus, ∂ ' ∗. Then recall that the sequence B
r

C
∗

ΣA is a fiber

sequence. Then r : [C,B] [C,C] is surjective. Pick a lift for the identity and call it g : C B. This
is a homotopy section of r. Then we look at the exact triangle:

π∗(A) π∗(B)

π∗(C)

π∗(f)

π∗(r)

π∗(∂) π∗(g)
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Note that π∗(∂) = 0 and π∗(r) admits a section (namely, π∗(g)), and we observe that we have a split short
exact sequence. Thus, π∗(f ∨ r) = π∗(f)⊕ π∗(r) is an iso.

The statement about epis can be derived from the first part, by taking the fiber f : F A of g :
A B and then observing that f is mono.

Observe that the splitting is not natural, since it involved a choice of a lift.

Definition 1.4. A sequence of spectra is E-exact if the sequence becomes exact after smashing with E.
The rest of the (E-)notions from 1.1 are defined similarly.

Definition 1.5. A spectrum I is E-injective if for each E-mono f : A B, and each map g : A I,
there is an up to homotopy solution to the diagram

A

B

I
g

f
h

Sidenote 1.6. Miller’s approach in defining these notions is different. Fortunately, one can reconcile
some of the differences. Miller considers ring spectra right away, so let us do the same. From this point on
we will assume that E is a ring spectrum, with structure maps e : S E (unit) and µ : E ∧ E E,
such that the following diagram commutes up to homotopy

S ∧ E E ∧ E E ∧ S

E

e ∧ 1 1 ∧ e

µ

We may also impose the condition that E is homotopy associative, though I don’t think it is strictly necessary
to prove some of the statements that I am about to give. Homotopy associativity means that the following
diagram is homotopy commutative

E ∧ E ∧ E E ∧ E

E ∧ E E

µ ∧ 1

1 ∧ µ µ

µ

Miller calls a spectrum I E-injective if it is a retract of E ∧ X for some spectrum X. Our notion of E-
injectivity implies this. For any spectrum X, the map e ∧ 1 : X E ∧X is E-mono. Indeed, 1 ∧ e ∧ 1 :
E ∧X E ∧E ∧X admits a homotopy retraction, namely, the map µ∧1. Then, by E-injectivity of I, we
obtain a homotopy retraction r : E ∧ I I. The implication goes the other way too. To see this consider
the diagram

A

B

E ∧A

E ∧B

E ∧ E ∧X

E ∧X

I

e ∧ 1

f

e ∧ 1

1 ∧ f

g

µ ∧ 1
r

h

1 ∧ (sg)

rh(e ∧ 1)

s
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The map h exists, since E ∧ A E ∧ B is monic. Just to check: rh(e ∧ 1)f = rh(1 ∧ f)(e ∧ 1) =
r(µ ∧ 1)(1 ∧ (sg))(e ∧ 1) = r(µ ∧ 1)(e ∧ (sg)) = rsg = g.

Another thing that may be somewhat unclear is Miller’s definition of E-exactness. By his definition,
A1 A2 . . . An is E-exact if we get an exact sequence when we apply the functor [−, I] for
E-injective spectra I. Our definition implies that of Miller. Just consider the diagram:

A1 A2 A3

I

E ∧A1 E ∧A2 E ∧A3

E ∧ I

e ∧ 1

∗

j1

e ∧ 1

f

j2

e ∧ 1

1 ∧ j1 1 ∧ j2

g

e ∧ 1

∗

r

Since, E ∧A1 E ∧A2 E ∧A3 is exact, we get the map g. Then we consider, rg(e ∧ 1) : A3 I.
It is a solution to our diagram: rg(e ∧ 1)j2 = rg(1 ∧ j2)(e ∧ 1) = r(1 ∧ f)(e ∧ 1) = r(e ∧ 1)f = f . I am not
sure whether the implication goes in the other direction or not. At this point we know that our assumptions
provide us with a more general setting. I’ve spent enough time with this sidenote. Let’s go.

When people define injective objects after that they usually define resolutions.
Definition 1.7. An E-Adams resolution (or an E-resolution) of a spectrum X is an E-exact sequence

∗ X I0 I1 . . .
i0 i1 i2

such that Ij’s are E-injective and is+1is ' ∗ for all s ≥ 0.
Remark 1.8. In general, the fact that we have an E-exact sequence does not imply is+1is ' 0. Indeed,

suppose we have the obvious map HZ HZ/2. (HG is the Eilenberg-MacLane spectrum for the abelian

group G.) Smashing it with HQ produces HQ ∧HZ HQ ∧HZ/2. The target spectrum is trivial, since
π∗(HQ ∧ HZ/2) = H∗(HZ/2;Q) = 0. However, in our setting, where the target maps are E-injective the

statement does follow through. Namely, suppose I is E-injective, and we are given a map ν : A I, such
that 1 ∧ ν : E ∧A E ∧ I is null. If σ : I B is the cofiber of ν, then 1 ∧ σ : E ∧ I E ∧B is the
cofiber of 1 ∧ ν ' ∗. This easily implies that 1 ∧ σ is mono, or that σ is E-mono. Then we get a retract
r : B I. Thus, ν = rσν ' ∗. We conclude that the condition is+1is ' ∗ is redundant.

Whenever people define resolutions after that what they want to check is whether or not they behave like
a derived category.

Proposition 1.9. Given a diagram of form

∗ X I0 I1 . . .
i0 i1 i2

∗ Y J0 J1
. . .

j0 j1 j2

f f0 f1

where the horizontal sequences are E-exact, and f is any map, there is a lift of f to a map of resolution.
Furthermore, this lift is unique up to chain homotopy.

Proof. Suppose we have lifted the map up to n-th level (regard f at level −1). Then we have a diagram

In−1 In In+1
in in+1

Jn−1 Jn Jn+1
jn jn+1

fn−1 fn fn+1
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Note that jn+1fnin = jn+1jnfn−1 ' ∗. Then according to 1.6, there exists fn+1, such that fn+1in+1 =
jn+1fn.

For the second part of the proposition, it suffices to prove that there is contracting chain homotopy for
f ' ∗. Set h0 = ∗. Then suppose we have constructed the chain homotopy h up to level n. We have the
following diagram,

In−1 In In+1
in in+1

Jn−2 Jn−1 Jn
jn−1 jn

fn−1 fn
hn−1 hn

hn+1

We know that fn−1 = hnin + jn−1hn−1. Then we observe that (fn − jnhn)in = fnin − jnhnin = jnfn−1 −
jnfn−1 + jnjn−1hn−1 = ∗. This implies that there exist hn+1, such that fn = hn+1in+1 + jnhn.

Another thing people would demand is the existence of resolutions. Let’s show that there are E-
resolutions. Here, we will definitely need that fact that E is an associative ring spectrum. The following
resolution is called canonical or standard.

Lemma 1.10. Let In = E∧(n+1) ∧X and let δi : In In+1 be the map 1∧i ∧ e ∧ 1∧(n+1−i) ∧ 1X , for
i ∈ {0, 1, . . . , n+ 1}. Then the sequence

∗ X I0 I1 . . .δ δ δ

where δ : In In+1 is the map
∑n+1
i=0 (−1)iδi, is an E-resolution.

Proof. It is fairly clear that In’s are injective. Thus, we need to show that the sequence is E-exact.
In fact what we are dealing with here is a cosimplicial spectrum, i.e. functor ∆ Spec, where ∆ is
the category of simplicial objects and Spec is the category of spectra. This cosimplicial spectrum sends
[n] to E ∧ In−1 (regard, X = I−1). The coface maps are di = 1 ∧ δi, and codegeneracy maps are sj =

1∧j−1 ∧ µ ∧ 1∧(n−j+1) ∧ 1X : In+1 In. It is rather tedious to check the cosimplicial identities, so we’ll
skip doing that. Here are the identities,

djdi = didj−1 (i < j)

sjdi = disj−1 (i < j)

= 1 (i = j, j + 1)

= di−1sj (i > j + 1)

sjsi = si−1sj (i > j).

The fact that δ2 = 0 follows formally from these identities. Now define ρ =
∑n
i=0(−1)isi. This is going to

be our contracting homotopy:

ρδ + δρ =

n+1∑
j=0

n+1∑
i=0

(−1)j+isjdi +

n∑
j=0

n∑
i=0

(−1)i+jdjsi =

n+1∑
j=1

j−1∑
i=0

(−1)j+idisj−1

+

�
���

���n∑
j=0

j+1∑
i=j

(−1)j+i + (−1)2n+2 +

n−1∑
j=0

n+1∑
i=j+2

(−1)j+idi−1sj +

n∑
j=0

n∑
i=0

(−1)i+jdjsi

=

n∑
i=0

n∑
j=i

(−1)j+1+idisj +

n∑
i=1

i−1∑
j=0

(−1)j+i+1disj +

n∑
j=0

n∑
i=0

(−1)i+jdjsi + 1

= 1.

The bottom line is that the chain complexes (or sequences of spectra) constructed from the cosimplicial
objects end up being exact. This completes the proof.

Now we are ready to construct the Adams spectral sequence.

4



2. The Construction

This should be rather painless... I hope. First we define the notion of E-Adams tower, which resembles
the Postnikov tower. This tower will give rise to an exact couple, which will produce the Adams spectral
sequence. Before constructing the exact couple, we will show that an E-Adams tower can be reconstructed
from an E-resolution.

Definition 2.1. A diagram of the following form

X X0 = I0 I1

X1 Σ−1I2

X2 Σ−2I3

..
.

i0 = ω0

ω1

ω2

g0

g1

g2

κ0

κ1

κ2

will be called a tower, if the sequences Xn+1 Xn Σ−nIn+1 are fiber sequences. We can derive a
sequence of the following form out of the tower:

∗ X I0 I1 . . .
i0 i1 i2

where in is the composition In ΣnXn In+1. If the resulting sequence is an E-resolution, then we
call the tower an E-Adams tower.

Remark 2.2. One thing that we can infer from any tower, is the fact is+1is ' ∗. It follows from the
following sequence,

In ΣnXn In+1 Σn+1Xn+1 In+2

The part of the sequence that is labeled green is a fiber sequence, hence the composition is null.

Proposition 2.3. Every E-resolution gives rise to an E-Adams tower.
Proof. Suppose that we have an E-resolution of X as in 2.1. We can break this resolution into syzygies,

X

I0

C1

I1

C2

C3

I2 . . .
i0

ρ1

i1

σ1

i2

ρ2

i3

ρ3

σ2

We define ρ1 to be the cofiber of i0, and let σ1 be an induced map, such that σ1ρ1 = i1. One can easily
show that ρ1 is E-epi and σ1 is E-mono. Now if we show that i2σ1 ' ∗, we can iterate the construction and
construct the syzygy. Since, i2σ1ρ1 ' ∗, we conclude that i2σ1 ' ∗, for ρ1 is E-epi and I2 is E-injective.

Now we construct the E-Adams tower inductively. Suppose that we have constructed the tower up
to the level n − 1, and it satisfies the following properties: (a) κn−1 = (Σ−n+1σn)λn−1, where λn−1 :

Xn Σ−n+1Cn; (b) λn−1ωn−1 ' ∗. Now let Xn be the fiber of κn−1 (we don’t really have a choice here).
Define λn via the following diagram:

Xn

Σ−nCn+1

Xn−1

Σ−n+1Cn Σ−n+1In

λn

gn−1

λn−1

κn−1

∂
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Thus, we can define κn to be (Σ−nσn+1)λn. We are left to construct ωn, such that λnωn ' ∗. Note,

κn−1ωn−1 = (Σ−n+1σn)λn−1ωn−1 ' ∗. This implies that there is a map ω : X Xn, such that ωn−1 =
gn−1ω. Then let us look at the diagram,

X Xn Σ−nCn+1

Xn−1 Σ−n+1Cn

Σ−nIn

ω

ψ
∂

gn−1

λn

λn−1

∂

Σ−nρn+1

Notice that ∂λnω = λn−1gn−1ω = λn−1ωn−1 ' ∗. Thus, there is ψ, such that λnω = (Σ−nρn+1)ψ. Define
ωn to be ω − ∂ψ. Let’s check: λnωn = λn(ω − ∂ψ) = λnω − λn∂ψ = λnω − (Σ−nρn+1)ψ = 0. This finishes
the inductive step of the construction of the tower. One can easily check that associated sequence to this
tower is the one that we started off with.

Notice that we can extract another sequence from the E-Adams tower:

X = C0 Σ−1C1 Σ−2C2
. . .

γ0 γ1 γ2

All the maps are the boundary maps of the appropriate cofiber sequences. We will refer to this sequence as
the associated inverse sequence. Note that after smashing this sequence with E all the maps become trivial.
Note also that the cofiber of γn is Σ−nIn. This sequence is what Ravenel calls an E-Adams resolution in
[RGB].

Suppose we are given an E-Adams tower. To get the spectral sequence we construct an exact couple,

D D

E

i

jk

where D =
⊕

s,t πt−s(Xs), E =
⊕

s,t πt(Is) are double graded groups. The maps are defined as follows,

i : Ds+1,t+1 = πt−s(Xs+1)
πt−s(gs)

πt−s(Xs) = Ds,t

j : Ds,t = πt−s(Xs)
πt−s(κs)

πt−s(Σ
−sIs+1) = Es+1,t

k : Es+1,t = πt−s(Σ
−sIs+1)

πt−s(∂s)
πt−s(ΣXs+1) = Ds+1,t

It is not difficult at all to understand that we have an exact couple here. Thus, we obtain an exact sequence
(Er, dr), which we call the Adams spectral sequence.

Remark 2.4. Before going into the next section let us comment on the grading of the differentials. With
care and the use of induction one can show that in r-th derived couple the maps have the following grading:
ir : Ds+1,t+1

r Ds,t
r , jr : Ds,t

r Es+r,t+r−1
r and kr : Es,tr Ds,t

r . Thus, dr : Es,tr Es+r,t+r−1
r .

Note that Es,t = πt(Is) = 0 if s < 0, which implies that Es,tr = 0 if s < 0. If r > s, the differentials entering
into Es,tr are all clearly 0. Thus, we see that E

s,t
s+1 ⊃ E

s,t
s+2 ⊃ . . . , and Es,t∞ =

⋂
r>s E

s,t
r . Notice also that Es,tr

may not ever stabilize to Es,t∞ .

There is an alternate exact couple that gives rise to the same spectral sequence. This exact couple actually
arises from the associated inverse sequence. We’ll write Kn = Σ−nCn. Replace D with F =

⊕
s,t πt−s(Ks).
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The maps are defined as follows:

i : Fs+1,t+1 = πt−s(Ks+1)
πt−s(γs)

πt−s(Ks) = Fs,t

j : Fs,t = πt−s(Ks)
πt−s(λs)

πt−s(Σ
−sIs) = Es,t

k : Es,t = πt−s(Σ
−sIs)

πt−s(Σ−sρs+1)
πt−s(ΣKs+1) = Fs+1,t

where ρs was defined in the proof of 2.3. There are maps from νs : Ks Xs, such that κsνs = Σ−s(σs+1),
gsνs+1 = γsνs and (Σ−s+1ρs)νs = ∂s. This produces a map between the exact couples that induces the
identity map on the E1-page. We will use this exact couple to prove statements about the convergence of the
Adams spectral sequence.

3. The E2-Page & The Convergence

In order to have a nice spectral sequence with nice E2-page and decent convergence, we need some
assumptions on our ring spectrum. We will state the assumptions later. Under the assumptions on the ring
spectrum, we can show that E-completion of spectra exist and the functor Ext makes sense. All we need to
know is that HZ/p and BP satisfy those conditions. We’ll talk about the conditions later.

Definition 3.1. If we have a sequence

X0 X1 X2
. . .

f0 f1 f2

then the homotopy limit of the sequence, holim Xs, is the fiber of the following map
∏
Xi

∏
Xj, where

(j − 1)-th component of the map is pj−1 − fjpj.

Definition 3.2. An E-Adams tower is simple if the associated inverse sequence has a trivial homotopy

limit, i.e. holim Kn = ∗.

Definition 3.3. An E-completion of a spectrum X is another spectrum X̂, with a map X X̂ that
induces an isomorphism on E∗-homology and X̂ has a simple E-Adams tower.

Before stating the main theorem, let me mention something about E∗E that we will need. If we assume
that E∗E is flat over π∗(E), then the pair (π∗(E), E∗E) is a graded Hopf algebroid. This assumption on E∗E
will be referred to as flatness of E. To specify the Hopf algebroid structure, we need to provide the structure
maps – ηL, ηR : π∗(E) E∗E, ∆ : E∗E E∗E ⊗π∗E E∗E, ε : E∗E π∗(E), and c : E∗E E∗E.
We can define some of these maps right away: ηL = π∗(e ∧ 1), ηR = π∗(1 ∧ e), ε = π∗(µ), and c = π∗(τ),

where τ : E ∧ E E ∧ E denotes the twist map. To define ∆ we’ll need the following lemma, which will
also be used later.

Lemma 3.4. There is a natural map

E∗E
⊗n ⊗π∗(E) E∗(X) π∗(E

∧(n+1) ∧X),

which an isomorphism.
Proof. We will define the map in due course. Actually, let’s look at the case n = 1. We define

m : E∗E ⊗π∗(E) E∗(X) π∗(E
∧2 ∧X),

so that if α ∈ π∗(E∧E), β ∈ π∗(E∧X), then m(α⊗β) = (1∧µ∧1)(α∧β). This map is an isomorphism for
the following reason. The functors E∗E⊗π∗(E)E∗(−) and π∗(E

∧2∧−) = (E∧E)∗(−) are homology theories
that agree on S0 via m (m can be thought of as a map between homology theories). Thus, they ought to be
naturally isomorphic via m. Note that we implicitly used the flatness of E to conclude that E∗E⊗π∗(E)E∗(−)
is a homology theory. The construction of the rest of the isomorphisms is done via induction.

We define ∆ as π∗(1 ∧ e ∧ 1) : π∗(E ∧E) = E∗E π∗(E ∧E ∧E) ∼= E∗E ⊗π∗(E) E∗E. It is a routine
check to verify the axioms of Hopf algebroid.
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Theorem 3.5. If E is flat, and X has an E-completion, the spectral sequence (Er, dr) for X converges

to π∗(X̂) and

E
s,t
2 = Exts,tE∗E

(π∗E,E∗(X)),

where Exts,tΓ (M,−) denotes the t-th graded piece of the s-th derived functor of HomΓ(M,−) over the category
of graded left Γ-comodules.

It actually does make sense to talk about derived functors, since, due to flatness of E, the category of
graded left E∗E-comodules is abelian. We will discuss the filtration of π∗(X̂) in due course.

Remark 3.6. We can show that E2-page has the above-mentioned form after a discussion on “uniqueness”
of Adams spectral sequence. Recall that we have constructed the Adams spectral sequence from the E-Adams
tower, and there could be lots of them, and in principle, they may give us different spectral sequences.
Theorem 3.5 hints us that starting from E2-page, the spectral sequences must be isomorphic. This is what
we mean by “uniqueness” of the spectral sequence. Let T1

X and T2
X be two E-Adams towers for X. These

two towers have corresponding E-resolutions, R1
X and R2

X for X. Lifting the identity, provides us with a

chain homotopy equivalence ρ : R1
X R2

X . We can lift this map to a map of towers τ : T1
X T2

X . This

induces a map between the corresponding spectral sequences, τ∗ : E
(1)
∗ E

(2)
∗ . Now lets see what τ∗ does

on E1-page. The differentials are easy to compute:

E
s,t
1 E

s+1,t
1D

s,t
1

πt(Is) πt(Is+1)πt−s(Xs+1)

d1 = πt(js+1)

The induced maps between the E1-pages are, πt(ρs) : πt(I
(1)
s ) πt(I

(2)
s ). Since ρ is chain homotopy

equivalence, then so is πt(ρ∗) for all t. Thus, πt(ρ∗) induces an isomorphism on cohomology of πt(I
(k)
∗ ).

However, E
(k)
2

s,t = Hs(πt(I
(k)
∗ )). A similar discussion proves that any map X Y induces a natural map

between the spectral sequences, “modulo E1-page”. This statement applies in general and no assumptions
were needed on E other than the ones made in section 2.

From the previous remark we can conclude that we can use any E-resolution to compute E2-page of the
Adams spectral sequence. We will use the one that we already know of, i.e. the canonical resolution. The
E1-page look as follows, Es,∗1 = π∗(Is) = π∗(E

∧(s+1) ∧X) = E∗E
⊗s ⊗π∗(E) E∗(X). After some examination

one realizes that the sequences we get on E1-page

0 E∗(X) E∗E ⊗π∗(E) E∗(X) E∗E
⊗2 ⊗π∗(E) E∗(X) . . .

is the cobar complex. The cohomology of this complex is known to beH∗(C(E∗(X))) = Ext∗,∗E∗E
(π∗(E), E∗(X)).

It is worked out in [RGB, A1.2.11, A1.2.12].

Now we’ll discuss the convergence of the Adams spectral sequence. Recall that X X̂ induces an
isomorphism on E∗-homology. This implies that E ∧X E ∧ X̂ is an equivalence. The map X X̂
induces a (natural) map between the canonical resolutions. Thus, we obtain a map from one spectral sequence

to the other one E∗ Ê∗. On page 1, the map looks as follows, Es,t1 = πt(E
∧(s+1) ∧X) πt(Ê

∧(s+1) ∧
X̂) = E

s,t
1 . This is clearly an isomorphism. Therefore, E∗ Ê∗ is an isomorphism. If we pick any two

resolutions of X and X̂, respectively, we are guaranteed by 3.6, that their spectral sequences are isomorphic,
in a natural way, starting from page 2. Thus, we will study the convergence of the spectral sequence of X̂.

It will be convenient to phrase the convergence in terms of proposition. There, we will also specify the
filtration of π∗(X̂).

Proposition 3.7. Suppose X̂ has a simple E-Adams tower. Then

Es,t∞
∼= imπt−s(Ks)/imπt−s(Ks+1)
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where the images are taken in πt−s(X̂), and
⋂

imπ∗(Kn) = 0.

Proof. We first show that the intersection of the filtration pieces is 0. Let X̂ K1 K2 . . . be

the inverse sequence associated to a simple E-Adams tower of X̂. Then, by definition, holim Kn = ∗. This

implies, among other things, that lim π∗(Kn) = 0. We will write for the Ln for
⋂

imπ∗(Kn+r) ⊂ π∗(Kn).

Then we have a sequence, L0 L1 L2 . . . , where the maps are the restrictions of π∗(γs)’s. These
restrictions are surjective. We are trying to show that L0 = 0. Suppose that x0 ∈ L0. Then there is x1 ∈ L1,
such that it maps to x0. Similarly, there is an element x2 ∈ L2, that maps to x1. If we continue this way, we

obtain an element (x0, x1, x2 . . . ) of lim π∗(Kn). However, this element must be 0, since the inverse limit is
trivial. This implies that x0 = 0.

I’ll define a map η : Es,t∞ Gs,t/Gs+1,t+1, where Gs,t = imπt−s(Ks) ⊂ πt−s(X̂). Let [α] ∈ Es,t∞ , where
α ∈ Es,t is an element that represents [α]. We would like to show that k(α) = 0. Notice that if r > s, then
dr([α]) = 0. Recall that dr = jrkr; thus, kr([α]) = k(α) ∈ ker jr = im ir. If we take into account the grading
we can show that k(α) ∈ imπt−s−1(Ks+r) ⊂ πt−s−1(Ks+1). Thus, k(α) ∈

⋂
r>s imπt−s−1(Ks+r) = 0, which

shows the claim.
Thus, by exactness of the sequence Fs,t Es,t Fs+1,t, we see that there is β ∈ Fs,t, such that

j(β) = α. There is a quotient map ϕ : Fs,t Gs,t Gs,t/Gs+1,t+1. Thus, we define η([α]) = ϕ(β). We
need to show that the definition is independent of the choice of α and β. This is equivalent to stating that
if [α] = 0, then for any lift β of α, ϕ(β) = 0. I would like to show first that in this case the choice of β does
not matter. Choose β, such that j(β) = α. Then j(β − β) = 0, which implies that β − β ∈ im i, implying
that ϕ(β) = ϕ(β). The fact that [α] = 0 implies that [α] ∈ im dr for some r ≤ s. One can show by induction
that the set of α’s in Es,t that satisfy this property is j(h−1(k(Es−r,t−r+1))), where the maps are shown in
the diagram:

Es−r,t−r+1

Es,t

πt−s(Ks−r+1)

πt−s(Ks)

k

h

j

Thus, we can find γ ∈ Es−r,t−r+1 and β ∈ πt−s(Ks), such that h(β) = k(γ) and j(β) = α. Then ih(β) =

ik(γ) = 0, implying that ϕ(β) = 0, since πt−s(Ks) πt−s(X) factors through ih.
Now suppose that [α] 6= 0. If η([α]) = 0, then there is a maximal r, such that the image of β, λ, in

πt−s(Ks−r+1) that is nonzero. Then i(λ) = 0. That means there is γ ∈ Es−r,t−r+1, such that k(γ) = λ. This
implies that dr([γ]) = [α], thus, contradicting the non-triviality of [α]. This shows that η is injective.

Now let’s show that η is surjective. Suppose we are given α = j(β) ∈ Es,t. This equivalent to saying
that k(α) = 0. If α survives (i.e. is a cycle) up till (r − 1)-th page, then kr([α]) = k(α) = 0. This implies
that dr([α]) = 0. Thus, α is cycle on r-th page as well. This proves that α defines a class in Es,t∞ . Clearly,
η([α]) = ϕ(β), which proves the surjectiveness.

The convergence may look a bit weird. However, it ends up being nice in the cases we may be interested
in. Actually, one thing we need is the existence of the E-completion. These assumptions are taken from
[RGB], and they guarantee the existence of the E-completion.

Assumptions 3.8. (a) E is commutative and associative.
(b) E is connective, i.e. πr(E) = 0 for r < 0.

(c) The map µ∗ : π0(E)⊗ π0(E) π0(E) is an isomorphism.

(d) Let θ : Z π0(E) be the unique ring homomorphism, and let R ⊂ Q be the largest subring to which
θ extends. Then Hr(E;R) is finitely generated over R for all r.

Theorem 3.9. If X is connective and E satisfies the conditions in 3.8, then X̂ = XG, if π0(E) = G

for the cases G = Q, Z(p), and Z. If G = Z/p and π∗(X) are finitely generated, then X̂ = XZp, where Zp
denotes the p-adic integers.

Proof. [ABB, 14.6, 15.∗].

Let me comment on the Adams spectral sequence for E = HZ/p. The E2-page, is that of classical
Adams spectral sequence, Ext∗,∗Ap∗

(Z/p, H∗(X;Z/p)). Where Ap∗ is the dual Steenrod algebra. If X is finite

CW-spectrum, the spectral sequence converges to π∗(X)⊗ Zp, which is π∗(X) modulo the non-p-torsion.
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