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2. The classical Dold-Thom Theorem

We begin by recalling the infinite symmetric product construction on (based) topological
spaces. Let X be a space. Then the n-fold cartesian product Xn has a natural action of
the symmetric group on n letters Σn. We define the n-fold symmetric product to be the
quotient

Symmn(X) = (Xn)/Σn.

If X has a chosen basepoint ∗ ∈ X, then for each n we have a natural inclusion
Symmn(X) ↪→ Symmn+1(X) given by (x1, . . . , xn) 7→ (x1, . . . , xn, ∗). We then define the
infinite symmetric product on X to be

Symm∞(X, ∗) = colim
n

Symmn(X).

Note that Symm∞(X, ∗) is a commutative topological monoid, with unit element given by
∗. In fact, the symmetric product on X is the free commutative monoid on X.

The classical Dold-Thom theorem reads

Theorem 1 (Dold-Thom,’58). Let X be a pointed, connected CW -complex. Then there is
a weak equivalence

Symm∞(X, ∗) ∼−→
∏
n≥1

K
(
Hn(X; Z), n

)
.

In other words, πn(Symm∞(X, ∗)) ∼= Hn(X; Z) for n ≥ 1.
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Remark 1. One can remove the connectedness assumption on X by introducing a “group-
completion” of the infinite symmetric product. One then gets the formula

πn(Symm∞(X, ∗)+) ∼= H̃n(X; Z)

for all n ≥ 0.

Remark 2. This theorem should not be surprising if one recalls the definition of singular
homology. Given a space X, the singular homology of X is given by the homotopy groups of
the free simplicial abelian group on the singular complex S•(X). Thus already in the defini-
tion of homology we are taking homotopy groups of the “free abelian group” construction.
This fits in with Quillen’s slogan “Homology is the left derived functor of abelianization.”

Remark 3. We will also write N(X, ∗) or Ñ(X) or N⊗X for the infinite symmetric product.
As this is a commutative topological monoid, the usual Grothendieck group construction
produces a topological abelian group, which we will denote Z̃(X) or Z⊗X.

One can in fact produce, given any abelian group A, a topological abelian group A⊗X
with the property that

πn(A⊗X) ∼= H̃n(X;A).
A construction of this space, due to McCord, is as follows. Let Bn(A,X) be the set of
functions f : X → A such that f(∗) = 0 and which are non-zero at at most n points. For
any a ∈ A and x ∈ X, let ax be the function which has value a at x and which vanishes at
all other points. We then topologize Bn(A,X) as the quotient

(A×X)n → Bn(A,X), ((a1, x1), . . . , (an, xn)) 7→ (a1)x1 + · · ·+ (an)xn .

Note that we have inclusions Bn(A,X) ↪→ Bn+1(A,X), and we define

A⊗X := colim
n

Bn(A,X),

with the topology of the union. Actually, McCord’s construction can be described quite
nicely as a tensor product of functors (see Nie).

Proof of the theorem. The usual way way to prove the Dold-Thom theorem is to show that
the functor X 7→ π∗(Symm∞(X, ∗)+) satisfies the axioms for a reduced homology theory on
based CW complexes, including the dimension axiom. The difficult axiom to check is that
one obtains long exact sequences from cofiber sequences. To handle this, Dold and Thom
introduced quasi-fibrations and proved a result allowing one to recognize quasi-fibrations.

We present instead a different proof, due to Spanier. For any simplicial set K•, let
NK• denote the free simplicial commutative monoid on K•, which is just given by the free
commutative monoid construction levelwise. Then there is a canonical homeomorphism

Symm∞(|K•|+) ∼= |NK•|
(here the + denotes adding a disjoint basepoint). The essential point is that Symm∞(|K•|+)
is built out of colimits and finite products of copies of |K•|+, and the geometric realization
functor commutes with these constructions1. It is clear that the symmetric product con-
struction on spaces preserves homotopies, and so the homotopy equivalence X ' |S•(X)|
for any CW complex X gives

Symm∞(X, ∗) ' Symm∞(|S•(X)|, ∗) ∼= |N(S•(X))/N(∗)|.
Finally, denoting N(K•)/N(∗) by Ñ(K•) for a pointed simplicial set K•, it suffices to show
that ÑK• ' Z̃K• for any connected pointed K• to complete the proof.

1Note that it is important that we work here in a good category of topological spaces, like compactly
generated spaces, so that | − | commutes with finite limits.
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We will say something about the equivalence ÑK• ' Z̃K• below, but note that if one is
merely interested in producing a space whose homotopy groups are the homology groups
of X, then that the above argument already gives Z⊗X = Symm∞(X, ∗)+ ' |Z̃(S•(X))|,
where here the plus denotes a naive group-completion.

We now address the equivalence ÑK• ' Z̃K•. By the Whitehead theorem, it suffices to
show that ÑK• ↪→ Z̃K• is a H∗-isomorphism. Probably the sensible course at this point is
to simply cite the spectral sequence argument of (Barratt-Priddy, 6.1).

Nevertheless, one can give a more explicit argument, at least in low degrees. First note
that one can define a splitting s to ZÑK• ↪→ ZZ̃K• by

s
(∑

i

ni

[∑
j

(mi,j −m′
i,j) · ki,j

])
=

∑
i

ni

[∑
j

mi,jki,j

]
,

where mi,j ,m
′
i,j ≥ 0, for each i, j at most one of mi,j and m′

i,j is nonzero, and the ki,j ’s are
distinct. Since an element of ZZ̃Kq is uniquely expressible in the above form, the section s

is well defined. The existence of the section s gives that the maps H∗(ÑK•) ↪→ H∗(Z̃K•) is
injective. It thus remains to show that we have a surjection in homology.

Since K• is connected, so is Z̃K•. Thus we have H̃0(ÑK•) ↪→ H̃0(Z̃K•) = 0. It remains
to obtain a surjection in higher degrees. The idea is to use the collapsed copy of Z at
the basepoint, together with connectivity, to modify classes appearing with negative Z̃
coefficients into the desired form.

We do this explicitly for q = 1. We will need two lemmas.

Lemma 1. For any v ∈ K0 and any cycle α =
∑

i ni[αi] in ZZ̃K1 we have
∑

i ni[s0(v) +
αi] '

∑
i ni[αi].

Proof. One can check that if γv ∈ Z̃K1 is any edge connecting v to ∗ = 0, then∑
i ni([s1(γv) + s0(αi)] − [s0(γv) + s1(αi)]) gives an explicit homotopy. The same argu-

ment works inducively for a chain of edges connecting v to ∗. �

Lemma 2. For any L ∈ Z̃K1 and I ∈ K1, we have

[L− I + s0d0I + s0d1I] ' [s0d0L + I]− [s0x0 + L].

Proof. Here the homotopy is given by [s0s0d0I + s1L− s1I + s0I]. �

[s0(e0) + s0(e1)− x] ' [s0(e0)]− [x] ' −[x].
Now let

∑
i ni[αi] ∈ ZZ̃K1 be a cycle. Then if some αi is L−I with L ∈ Z̃K1 and I ∈ K1,

we can use the first lemma to replace [αi] with [αi + s0d0(I) + s0d1(I)]. One can then use
the second lemma to get rid of the negative coefficient in front of I. In this way, one can
replace

∑
i ni[αi by a cycle in ZÑK1 as desired. �

One useful consequence of the theorem is that it gives constructions of Eilenberg-
Mac Lane spaces:

Corollary 1. Symm∞(Sn) is a K(Z, n) (n ≥ 1).

3. The equivariant version

Let G be a finite group. Note that the above constructions pass over to the equivariant
setting. That is, if X is a G-space, then Symmn(X) and Symm∞(X+) naturally inherit
G-actions. The question then becomes to identify the equivariant homotopy type of this
space.
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Theorem 2 (dos Santos). Let X be a based G-CW-complex, let V be a finite-dimensional
G-representation, and let M be a Z[G]-module. Then M ⊗X is an equivariant infinite loop
space and there is a natural isomorphism

πG
V (M ⊗X, ∗) ∼= H̃G

V (X;M).

Remark 4. Lima-Filho first proved the above result in the case M = Z (with trivial
G-action) and where V is a trivial representation.

Before giving the proof, we recall some of the definitions involved in the statement of the
theorem.

Definition 1. The orbit category OG is the category with objects the orbits G/H and
where OG(G/H, G/K) is the set of maps of G-sets G/H → G/K.

Definition 2. A coefficient system is a contravariant functor Oop
G → Ab.

Given a Z[G]-module M , one can define a coefficient system M by M(G/H) = MH , the
submodule of H-fixed points. Given any coefficient system N , there is a (Z-graded) Bre-
don homology theory HG

∗ (−;N) satisfying equivariant analogues of the Eilenberg-Steenrod
axioms.

Finally, if M is a Z[G]-module and X is a based G-space, we consider the construction
M ⊗X from the previous section as a G-space by taking the diagonal action of G.

Example 1. Note, however, that (M ⊗ X)H 6' MH ⊗ XH . For example, take H =
G = Z/2Z, M = Z with trivial action, and X = CP1 with Z/2Z-action given by complex
conjugation. One can show that Z ⊗ CP1 ' CP∞ with G-action again given by complex
conjugation. Thus (Z ⊗ CP1)Z/2Z ' RP∞. On the other hand, ZZ/2Z ⊗ (CP1)Z/2Z ∼=
Z⊗ RP1 ' S1.

Proof of the theorem. We only prove the theorem in the case V = Rn is a trivial represen-
tation.

We would like to mimic Spanier’s proof from above. Note that if X is a G-CW complex,
we have a G-homotopy equivalence X ' |S•(X)|, where here | − | : G− sSet � GTop : S•
is the G-equivariant analogue of the usual adjoint pair. For instance, for a G-space X, the
G-simplicial set S•(X) is the usual singular complex on X, which then inherits a G-action
from that on X.

Now the arguments from the nonequivariant proof still give

M ⊗X ' M ⊗ |S•(X)| ∼= |M ⊗ S•(X)|,
but it is not clear how to directly identify the homotopy groups of the latter space with the
Bredon homology groups of X. For a proof along these lines, see Nie.

Instead, we will show that π∗(M ⊗ X) satisfies the axioms for an ordinary equivariant
homology theory. As in the nonequivariant case, the only axiom that needs work is exact-
ness. We wish to show that M ⊗ (−) converts cofiber sequences into fiber sequences. By
the above, it suffices to show that if (X, A) is a G-CW pair then the sequence

M ⊗ S•(A) → M ⊗ S•(X) → M ⊗
(
S•(X)/S•(A)

)
is a G-fiber sequence in G−sSet. But since the induced map

(
M⊗S•(X)

)
/
(
M⊗S•(A)

)
→

M ⊗
(
S•(X)/S•(A)

)
is an isomorphism of G-simplicial sets, one gets in particular that each(

M ⊗ S•(X)
)H →

(
M ⊗

(
S•(X)/S•(A)

))H

is a surjective map of simplicial abelian groups and therefore a Kan fibration.
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This shows that πG
∗ (M ⊗X) is an equivariant homology theory, and to finish the proof

we check the dimension axiom. For this we will use a Lemma.

Lemma 3. Let K be a based finite G-set. Then for any based G-space X there is an
isomorphism of G-spaces

Map∗(K, M ⊗X) ∼= M ⊗ (K ∧X),

where G acts on Map∗(K, M ⊗X) by conjugation.

Now the computation is

πG
n (M ⊗ (G/H+)) ∼= [Sn,M ⊗ (G/H+)]G ∼= [Sn,Map∗(G/H+,M)]G

∼= [Sn ∧G/H+,M ]G ∼= [Sn,M ]H ∼=
{

0 n 6= 0
MH n = 0.

This verifies the dimension axiom.
�


