** Echelon form, The geometry of vectors

Thursday, October 20

1. Let

$$A = \begin{pmatrix} 2 & -4 & 4 & -2 \\ 3 & 1 & -1 & -3 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

- (a) Without switching any rows, row reduce *A* into echelon form. Which columns have pivots? What are the pivots?
- (b) Switch the first and third rows of *A*, and then row reduce the matrix into echelon form without using any additional switching of rows. Which columns have pivots? What are the pivots?
- (c) Further reduce the matrices you found in (a) and (b) into reduced echelon form.

- 2. Consider vectors **u** and **w** as represented to the right.
 - (a) Draw the vectors $2\mathbf{u}$ and $-\mathbf{u}$.
 - (b) Draw the vectors $\mathbf{u} + \mathbf{w}$, $\mathbf{u} \mathbf{w}$, and $\mathbf{u} 2\mathbf{w}$.
 - (c) What is the geometric description of $\mathbf{u} \mathbf{w}$ in general?
 - (d) What is $\text{Span}\{\mathbf{u}, \mathbf{w}\}$?
- 3. Let $\mathbf{u} = (1, -1, 2)$, $\mathbf{v} = (2, 1, -2)$, and $\mathbf{w} = (-2, 2, -4)$ in \mathbb{R}^3 .
 - (a) Describe Span{ \mathbf{u}, \mathbf{v} }, Span{ \mathbf{u}, \mathbf{w} }, and Span{ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ }. What shape in \mathbb{R}^3 does each of these form?
 - (b) Is the vector **b** = (1,0,0) a linear combination of **u** and **w**? Is it a linear combination of **u** and **v**?
 - (c) Is the vector $\mathbf{c} = (1, 1, 1)$ a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} ?