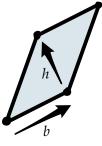
Tuesday, November 8 ** Determinants

- 1. Recall that if *A* is an $n \times k$ matrix, then the transpose A^T is the $k \times n$ matrix whose columns are the rows of *A*.
 - (a) Show that if A is 2×2 , then $det(A) = det(A^T)$.
 - (b) For a general n × n matrix A, consider the cofactor calculation of det(A^T) along row
 i. How would you describe this in terms of the original matrix? How is det(A^T) related to det(A)?
 - (c) Find the determinant of

$$A = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 2 & -5 & 0 & 0 \\ 7 & 14 & 2 & 0 \\ -5 & 8 & 9 & 1 \end{pmatrix}$$

2. An important geometric interpretation of determinants is in terms of area and volume. Recall that if *P* is a parallelogram, then the area of *P* can be calculated as

Area =
$$(base) \cdot (height)$$
.



- (a) Let A be a 2 × 2 matrix with columns given by u and v. Suppose that u and v are linearly *dependent* (in other words, one is a multiple of the other). What is det(A)? Form the "parallelogram" with sides u and v. What is the area of this parallelogram?
- (b) Suppose that *A* is a 2 × 2 diagonal matrix with columns **u** and **v**. What is the area of the resulting parallelogram, and what is det(*A*)?
- (c) Suppose that *A* is a lower triangular 2×2 matrix with columns **u** and **v**. What are the base and height of the parallelogram? What is the area, and what is det(*A*)?
- (d) Let *A* be any 2×2 matrix with nonzero entry in position (1,1). Then you can add an appropriate multiple of **u** to **v** in order to make *A* into a lower triangular matrix. The determinant of *A* is unchanged. Why is the area of the parallelograms also unchanged?
- (e) Finally, explain how to remove the assumption that the $a_{11} \neq 0$. That is, establish a relationship between det(A) and the area of the parallelogram determined by the columns of A, for any A.
- 3. Use the previous problem to find the area of the following parallelograms.
 - (a) *P* has vertices (0,0), (3,1), (-1,2), (2,3).
 - (b) *P* has vertices (−1,0), (0,5), (1,−4), (2,1). Hint: It may help to translate the parallelogram so that one of the vertices is the origin.