Thursday, November 10 ** Vector Spaces & Subspaces

- 1. Let $M_2(\mathbb{R})$ be the vector space of all 2×2 matrices. In each item below, determine whether or not the given collection of vectors is a subspace of $M_2(\mathbb{R})$. If it is a subspace, find a minimal spanning set.
 - (a) Let $D_2(\mathbb{R})$ be the space of all 2×2 diagonal matrices.
 - (b) Let $U_2(\mathbb{R})$ be the space of all 2×2 upper triangular matrices.
 - (c) Let $L_2^s(\mathbb{R})$ be the space of all 2×2 special lower triangular matrices.
 - (d) Let $S_2(\mathbb{R})$ be the space of all 2×2 "symmetric" matrices. A matrix *A* is symmetric if $A = A^T$.
 - (e) Let $Gl_2(\mathbb{R})$ be the space of all 2 × 2 invertible matrices.
- 2. Let $\mathcal{F}(\mathbb{R})$ be the vector space of real-valued functions of one variable. Determine whether the following subsets of $\mathcal{F}(\mathbb{R})$ are subspaces.
 - (a) The collection of constant functions.
 - (b) The collection of functions f(x) satisfying f(3) = 0.
 - (c) The collection of functions f(x) satisfying f(0) = 3.
 - (d) The collection of continuous functions.
 - (e) The collection of bounded functions. (Recall that f(x) is bounded if there is a number M such that |f(x)| < M for all x.)
 - (f) The collection of differentiable functions.
- 3. Let

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ -2 & 1 & 0 & 1 \\ -4 & 1 & -2 & -1 \end{pmatrix}$$

- (a) Find a minimal spanning set for Nul(A).
- (b) Find a minimal spanning set for Col(A).