Tuesday, December 6 ** Orthogonal bases & Orthogonal projections **** Solutions**

- 1. A basis \mathscr{B} is called an **orthonormal** basis if it is orthogonal and each basis vector has norm equal to 1.
 - (a) Convert the orthogonal basis

$$\mathscr{B} = \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

into an orthonormal basis \mathscr{C} .

Solution. We just scale each basis vector by its length. The new, orthonormal, basis is

$$\mathscr{C} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

rdinates of the vectors $\mathbf{v}_1 = \begin{pmatrix} 1\\3\\5 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} -4\\2\\7 \end{pmatrix}$ in the basis \mathscr{C} .

(b) Find the coordinates of the vectors $\mathbf{v}_1 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$ in the basis \mathscr{C} . **Solution.** The formula is the same as for a general orthogonal basis: writing \mathbf{u}_1 , \mathbf{u}_2 ,

and \mathbf{u}_3 for the basis vectors, the formula for each coordinate of \mathbf{v}_1 in the basis \mathscr{C} is

$$\frac{\mathbf{u}_i \cdot \mathbf{v}_1}{\|\mathbf{u}_i\|^2} = \mathbf{u}_i \cdot \mathbf{v}_1.$$

We compute to find

$$\mathbf{u}_{1} \cdot \mathbf{v}_{1} = \frac{2}{\sqrt{2}} = \sqrt{2}, \qquad \mathbf{u}_{2} \cdot \mathbf{v}_{1} = \frac{-6}{\sqrt{6}} = -\sqrt{6}, \qquad \mathbf{u}_{3} \cdot \mathbf{v}_{1} = \frac{9}{\sqrt{3}} = 3\sqrt{3},$$

so $(\mathbf{v}_{1})_{\mathscr{C}} = \begin{pmatrix} \sqrt{2} \\ -\sqrt{6} \\ 3\sqrt{3} \end{pmatrix}$. Similarly, we get
 $\mathbf{u}_{1} \cdot \mathbf{v}_{2} = \frac{6}{\sqrt{2}} = 3\sqrt{2}, \qquad \mathbf{u}_{2} \cdot \mathbf{v}_{2} = \frac{-16}{\sqrt{6}} = -8\sqrt{\frac{2}{3}}, \qquad \mathbf{u}_{3} \cdot \mathbf{v}_{2} = \frac{5}{\sqrt{3}},$
so $(\mathbf{v}_{2})_{\mathscr{C}} = \begin{pmatrix} 3\sqrt{2} \\ -8\sqrt{2/3} \\ 5/\sqrt{3} \end{pmatrix}$.

Orthonormal bases are very convenient for calculations.

2. (The Gram-Schmidt process) There is a standard process for converting a basis into an orthogonal basis. Let $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for \mathbb{R}^3 . In this problem, you will find an orthogonal basis $\mathscr{C} = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Start by setting $\mathbf{w}_1 = \mathbf{v}_1$. Then we want \mathbf{w}_2 to be orthogonal to \mathbf{v}_1 . If we write \mathbf{p} for the projection of \mathbf{v}_2 onto \mathbf{w}_1 , then $\mathbf{v}_2 - \mathbf{p}$ is orthogonal to \mathbf{w}_1 , so we may choose this for \mathbf{w}_2 . In other words,

$$\mathbf{w}_2 = \mathbf{v}_2 - \operatorname{proj}_{\mathbf{w}_1}(\mathbf{v}_2).$$

Next, we want \mathbf{w}_3 to be orthogonal to **both** \mathbf{w}_1 and \mathbf{w}_2 , so we define

$$\mathbf{w}_3 = \mathbf{v}_3 - \operatorname{proj}_{\mathbf{w}_1}(\mathbf{v}_3) - \operatorname{proj}_{\mathbf{w}_2}(\mathbf{v}_3).$$

(a) Use the Gram-Schmidt process to convert

$$\mathscr{B} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix} \right\}$$

into an orthogonal basis \mathscr{C} .

Solution. We set $\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Then

$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} -1/2\\1/2\\1 \end{pmatrix}$$

We then take

$$\mathbf{w}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{2}{3/2} \begin{pmatrix} -1/2 \\ 1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \\ -1/3 \end{pmatrix}.$$

(b) Convert this orthogonal basis into an orthonormal basis, and then find the coordinates of the vector $\mathbf{v} = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}$ in this orthonormal basis.

Solution. The orthonormal basis is

$$\mathscr{C} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \sqrt{\frac{2}{3}} \begin{pmatrix} -1/2\\1/2\\1 \end{pmatrix}, \sqrt{3} \begin{pmatrix} -1/3\\1/3\\-1/3 \end{pmatrix} \right\}.$$

Note that another way to write this same basis is as

$$\mathscr{C} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\1\\2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\-1 \end{pmatrix} \right\}.$$

A computation as in problem 1 gives $(\mathbf{v})_{\mathscr{C}} = \begin{pmatrix} 9/\sqrt{2} \\ -\sqrt{3/2} \\ -2\sqrt{3} \end{pmatrix}$.

3. Find the least squares solution to the system of equations

$$2x + y = 3$$
$$-x - y = 2$$
$$3x + y = 3.$$

Solution. We have $A = \begin{pmatrix} 2 & 1 \\ -1 & -1 \\ 3 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$. The least squares solution is the solution to the normal equation

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

The matrix $A^T A$ is

$$A^T A = \begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix}$$

with inverse

$$(A^T A)^{-1} = \frac{1}{6} \begin{pmatrix} 3 & -6 \\ -6 & 14 \end{pmatrix}.$$

The least squares solution is therefore given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b} = \frac{1}{6} \begin{pmatrix} 3 & -6 \\ -6 & 14 \end{pmatrix} \begin{pmatrix} 13 \\ 4 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 15 \\ -22 \end{pmatrix}.$$

Note that

$$A\mathbf{x} = \begin{pmatrix} 4/3\\ 7/6\\ 23/6 \end{pmatrix} \neq \mathbf{b}$$

so the least squares solution **x** is not an *actual* solution.