Tuesday, September 27 ** *Taylor series, the* 2nd *derivative test, and changing coordinates.*

1. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function having partial derivatives of all orders. The **Taylor series** of *f* centered around $\mathbf{c} = (a, b)$ is a power series in *x* and *y* of the form

$$T(f, \mathbf{c}) = f(\mathbf{c}) + \alpha_{1,0}(x - a) + \alpha_{0,1}(y - b) + \alpha_{0,2}(y - b)^2 + \text{higher order terms}$$

+ $\alpha_{2,0}(x - a)^2 + \alpha_{1,1}(x - a)(y - b) + \alpha_{0,2}(y - b)^2 + \text{higher order terms}$

(a) Assume that the Taylor series converges to f, so that

$$f(x,y) = T(f,\mathbf{c})(x,y)$$

(at least in a disk around **c**). Take partial derivatives of both sides with respect to *x* to find the coefficient $\alpha_{1,0}$. Use $\frac{\partial}{\partial y}$ to find $\alpha_{0,1}$.

- (b) Use second order partial derivatives to find the coefficients $\alpha_{2,0}$, $\alpha_{1,1}$, and $\alpha_{0,2}$.
- 2. Consider $f(x, y) = 2\cos x y^2 + e^{xy}$.
 - (a) Show that (0,0) is a critical point for f.
 - (b) Calculate each of f_{xx} , f_{xy} , f_{yy} at (0,0) and use this to write out the 2nd-order Taylor approximation for f at (0,0).
 - (c) To make sure the next two problems go smoothly, check your answer to (b) with the instructor.
- 3. Let g(x, y) be the approximation you obtained for f(x, y) near (0, 0) in 1(b).
 - (a) It's not clear from the formula whether *g*, and hence *f*, has a min, max, or a saddle at (0,0). Test along several lines until you are convinced you've determined which type it is.
 - (b) Check that you're right in (a) using the 2nd-derivative test. The next problem will help explain why this test works.
- 4. Consider alternate coordinates on \mathbb{R}^2 where (u, v) corresponds to u(1, 1) + v(-1, 1).
 - (a) Sketch the *u* and *v*-axes, and draw the points whose (u, v)-coordinates are: (-1, 2), (1, 1), (1, -1).
 - (b) Give the general formula for the (x, y)-coordinates of a point in terms of u and v. (Like $x = r \cos \theta$ and $y = r \sin \theta$ in polar coordinates.)
 - (c) Use (*b*) to express *g* as a function of *u* and *v*, and expand and simplify the resulting expression.
 - (d) Explain why your answer in 3(c) confirms your answer in 2.
 - (e) Sketch a few level sets for g. What do the level sets of f look like near (0,0)?

It turns out that there is always a similar change of coordinates so that the Taylor series of a function *f* which has a critical point at (0,0) looks like $f(u,v) \approx f(0,0) + au^2 + bv^2$.